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Abstract
This thesis work introduces a novel extended generalized tanh-function method

for deriving exact solutions to nonlinear partial differential equations. Central to

this approach is an ansatz 𝑌𝑝 incorporating a tunable parameter 𝑝 which provides

significant flexibility in the characteristics of the resulting solution families. The

method is applied to the classical Boussinesq equation.

Application of this extended method yields 8 unique families of exact, tun-

able solutions, including solitons, non-soliton traveling waves, and plane periodic

solutions. Critically, for 𝑝 ≠ 1, these solutions pertain to a forced Boussinesq

equation with the forcing term 𝐹(𝑌𝑝) explicitly dependent on 𝑝. Solutions to

the original, unforced Boussinesq equation, as obtained through standard tanh

method, are recovered when 𝑝 = 1 is set and where 𝐹(𝑌𝑝) vanishes.

The parameter 𝑝 is found to greatly influence solution characteristics. For

0 ≤ 𝑝 ≤ 1, localized waves generally widen and flatten. For 𝑝 > 1, they narrow

and heighten. A fundamental transformation to trigonometric forms and oscil-

latory behavior occurs for 𝑝 < 0, where the wave number becomes imaginary,

potentially introducing singularities.

This work significantly expands the analytical solution space for Boussinesq-

type equations, demonstrating the method’s capacity to generate a diverse

spectrum of wave behaviors. The study underscores the importance of the

tunable parameter 𝑝 and the associated forcing function, opening new avenues

for theoretical modeling and understanding nonlinear wave phenomena. Future

research includes applying the method to other nonlinear systems and further

exploring the parameter space and physical implications.

Keywords: nonlinear partial differential equations, Boussinesq equation, general-

ized tanh method, extended generalized tanh method, tunable solutions, solitary

waves, solitons, periodic waves, forcing function
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1. Introduction
The study of nonlinear wave phenomena represents one of the most challenging

and significant areas in mathematical physics. Among the many nonlinear partial

differential equations that describe such phenomena, the Boussinesq equation

stands out for both its physical significance and mathematical richness. This

equation, which in dimensionless form is given by

𝜕2
𝑡 𝑢 − 𝑐2𝜕2

𝑥 − 𝛼𝜕2
𝑥𝑢2 − 𝛽𝜕4

𝑥𝑢 = 0, (1.1)

has shaped our understanding of long waves in shallow water since its introduc-

tion by Boussinesq in the 1870s [8,9] (see also [10]). While it found its primary

application in hydrodynamics and coastal engineering, such as in modeling

wave interactions in various nearshore zones as illustrated in Figure 1, this

equation has proven surprisingly versatile. It appears in wide-ranging physical

systems, including nonlinear magnetosound waves in plasmas [11,12], observed

thin turbulent layers in the atmosphere [13,14], nonlinear wave perturbations

in acoustic-like regimes [15], electromagnetic waves in nonlinear dielectrics [16],

elastic waves in antiferromagnets [17], and vibrations in nonlinear strings [18].

(a): Spatial domain (b): Intermediate mesh

(c): Model at 𝑡 = 30 (d): Model at 𝑡 = 30
Figure 1:  Unstructured triangular meshes of the harbor geometry (a, b) and

simulated model of the the waves on the free surface at time 𝑡 (c, d) [1].
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The Boussinesq equation derives from a family of nonlinear equations charac-

terized by a second-order time derivative 𝜕2
𝑡 𝑢 and the general form

𝜕2
𝑡 𝑢 − 𝜕2

𝑥𝑢 + 𝑃(𝑢) = 0, (1.2)

where 𝑃(𝑢) is a nonlinear term, and 𝑢 = 𝑢(𝑥, 𝑡) is a differentiable function of

space 𝑥 and time 𝑡. Unlike unidirectional pdes such as the Korteweg-de Vries

(KdV) and KdV-type equations which involve a 𝜕𝑡𝑢 term, the Boussinesq

equation exhibits bidirectional wave propagation, traveling in both left and

right directions [19]. However, despite this distinction, this equation is actually

closely related to other key equations in nonlinear wave theory. For instance, it

reduces to the KdV equation if the interaction of opposing waves is neglected,

considering only one direction [20]. It can also be obtained from or reduced

to the Kadomtsev-Petviashvili (KP) equation under certain conditions [21,22].

Furthermore, it can approximate the nonlinear Schrödinger (NLS) equation for

complex-valued amplitudes in the slow modulation regime, with its rational

solutions bearing resemblance to the NLS rogue waves. A crude overview of

these relationships and applications is presented in Figure 2.

The equation incorporates competing effects: nonlinearity, which steepens

the wave, and linear dispersion, which spreads it [9]. This balance allows for the

existence of soliton solutions, which are particle-like waves with a stable profile

and constant shape and speed [23]. The Boussinesq equation also accounts for

frequency dispersion, enabling it to model a wider range of wave phenomena

than classical shallow-water equations, those derived from the Navier-Stokes

equations say [24]. However, soliton solutions specific to the Boussinesq equation

can exhibit complex behaviors like singularity formation or decay under pertur-

bations [21,25,26] (see also [27]). Additionally, different forms of the equation

exist. For instance, depending on the sign of 𝛽, the equation can be ill-posed

when 𝛽 = 1 or well-posed when 𝛽 = −1, though both classical forms can be

completely integrable [23,28]. The improved Boussinesq equations, which modify

the dispersive term by incorporating a mixed fourth-order derivative 𝜕2
𝑡 𝜕2

𝑥𝑢
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instead of the purely spatial 𝜕4
𝑥 term [29,30], are also studied but are not the

focus of this work.

Boussinesq
equations

Boussinesq,
Klein-Gordon,
Liouville family

solitary
waves

KdV, KdV-type family

Burger, Fisher family

Camassa-Holm, Schrödinger family

methods

etc.

tanh-based

Hirota’s bilinear

inverse scattering

nonlinear partial
differential equations

applications

subsurface hydrology

nonlinear strings and lattices

waves in plasmas

atmospheric science

coastal engineering

Figure 2:  Overview of the Boussinesq equation: relationships to other solitary

wave-describing nonlinear pdes, solution techniques, and applications.

While various analytical methods have been developed to solve the Boussi-

nesq equation and other solitary wave-describing nonlinear pdes, traditional

approaches like the standard tanh-function method often produce solutions

with fixed characteristics, limiting their flexibility for modeling diverse physical

phenomena. This thesis addresses this limitation by developing and applying

a more adaptable solution method that can produce tunable solution families

based on an extension and generalization of the widely-used standard tanh-

function method.

In this work, we introduce and systematically apply our extended general-

ized tanh-function method to derive exact solutions for the classical Boussinesq
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equation, specifically the form with 𝛼 = 3 and 𝛽 = 1, often referred to in liter-

ature. Central to this approach is an ansatz incorporating a tunable parameter

𝑝, offering significant flexibility in the characteristics of the resulting solution

families. This thesis will detail the formulation of this generalized method and

a subsequent novel extension designed to further expand the solution space.

By applying these methods, this study aims to derive new tunable soliton,

periodic, and other traveling wave solutions. A key aspect will be demonstrating

how these solutions, particularly for 𝑝 ≠ 1, pertain to a forced version of the

Boussinesq equation, where the forcing term is explicitly dependent on the

tunable parameter 𝑝. It will also be shown that solutions to the original, unforced

Boussinesq equation, as obtainable through the standard tanh method, can be

recovered as special cases. The influence of the tunable parameter 𝑝 on solution

characteristics will be a central point of discussion.

The remainder of this thesis is organized as follows: Section 2 provides a

comprehensive review of the Boussinesq equation and the tanh-function method,

Section 3 details the mathematical foundations of our extended generalized tanh-

function method. Section 4 systematically applies this method to the Boussinesq

equation deriving and analyzing new solution families, and explores the physical

interpretations of these solutions and the significance of the tunable parameter

𝑝. Finally, Section 5 summarizes our contributions and discusses directions for

future research.

This paper focuses on the development and application of this generalized

method to the (1 + 1)-dimensional Boussinesq equation. While not intended to

improve the Boussinesq equation itself, the derived forcing functions and the

tunable nature of the solutions may offer new perspectives for physical modeling.

This work lays the groundwork for a robust generalization of the tanh-function

method, with potential future research directions including its application to

other nonlinear systems and further exploration of the parameter space and

forcing functions.
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2. Review of Related Literature

2.1. Boussinesq equation in depth
The classical Boussinesq equation, expressed in dimensionless form as

𝜕2
𝑡 𝑢 − 𝑐2𝜕2

𝑥 − 𝛼𝜕2
𝑥𝑢2 − 𝛽𝜕4

𝑥𝑢 = 0 (2.1)

has been extensively studied since its original formulation by Boussinesq in

the 1870s for describing long waves in shallow water [8,9]. Ursell [10] provided

important early theoretical developments that established the equation’s math-

ematical foundation.

The equation’s applicability extends far beyond its original hydrodynamic

context. Karpman [11], followed by Scott [12], demonstrated its relevance to

nonlinear magnetosound waves in plasma physics. In atmospheric sciences, Klein

[13] and Achatz [14] identified the equation’s role in modeling thin turbulent

layers. Whitham [15] explored its applications to nonlinear wave perturbations

in acoustic regimes, while Xu, Auston and Hasegawa [16] investigated electro-

magnetic wave phenomena in nonlinear dielectrics. Further applications include

elastic wave propagation in antiferromagnets [17] and vibrations in nonlinear

string systems [18].

Wazwaz [19] provides a comprehensive analysis of the equation’s bidirec-

tional wave propagation properties, contrasting it with unidirectional equations

such as the Korteweg-de Vries equation. The mathematical connections between

these equations have been thoroughly investigated. Korteweg and de Vries [20]

established the relationship whereby the Boussinesq equation reduces to the

KdV equation under unidirectional assumptions. Bogdanov and Zakharov [21]

demonstrated how the equation can be derived from the Kadomtsev-Petviashvili

equation through dimensional reduction techniques, while Chen [22] showed the

reverse relationship under near-unidirectional conditions. Clarkson and Dowie

[31] investigated the connections to the nonlinear Schrödinger equation, partic-

ularly in the context of rational solutions and their relationship to rogue wave
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phenomena. This work builds on earlier studies of extreme wave events by

Dysthe, Krogstad and Müller [32], and Kharif, Pelinovsky and Slunyaev [33],

establishing the Boussinesq equation’s relevance to understanding unpredictable

wave behavior.

The equation’s treatment of competing physical effects has been well-

documented in the literature. Boussinesq’s original work [9] identified the

balance between nonlinear steepening and linear dispersion as fundamental to

the equation’s wave-describing capabilities. Dingemans [24] provided detailed

analysis of how frequency dispersion in the Boussinesq framework enables

modeling of shorter wavelength phenomena compared to classical shallow-water

approaches derived from Navier-Stokes equations.

The equation’s soliton solutions have also received considerable attention.

Hereman [23] provides comprehensive analysis of particle-like wave solutions,

characterized by their single-humped profiles and constant propagation proper-

ties. However, several studies have identified anomalous behaviors in Boussinesq

solitons. Bogdanov and Zakharov [21], Yang and Wang [25], and Kutev et

al. [26] documented finite-time singularity formation and perturbation-induced

decay phenomena. Earlier work by Falkovich, Spector and Turitsyn [27] provided

theoretical foundations for understanding these instability mechanisms.

The mathematical well-posedness of different Boussinesq forms has been

thoroughly investigated. Clarkson and Kruskal [34] established general principles

for coefficient scaling and sign considerations, demonstrating that equations with

𝛼 > 0 and varying 𝛽 values yield equivalent forms under appropriate transfor-

mations. McKean [28] provided crucial analysis showing that 𝛽 = −1 leads to

well-posed formulations, while Hereman [23] confirmed that 𝛽 = 1 results in ill-

posed problems for arbitrary initial data. Despite posedness considerations, both

classical forms maintain complete integrability, as demonstrated by Zakharov

[18] and McKean [28]. This complete integrability, involving infinite conserva-

tion laws and symmetries, places the Boussinesq equation among the select
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few completely integrable nonlinear partial differential equations. Ablowitz and

Segur [35] provide comprehensive treatment of the implications of complete

integrability, including multi-soliton solution existence and inverse scattering

formalism applicability.

Recent developments have focused on improved Boussinesq formulations

incorporating mixed temporal-spatial derivatives. Bona, Chen and Saut [29,36]

established well-posedness results for equations featuring 𝜕2
𝑡 𝜕2

𝑥𝑢 terms instead

of purely spatial fourth-order derivatives. Hereman [23] demonstrated how these

modifications enhance dispersive properties and broaden applicability to diverse

wave phenomena. However, Christov, Maugin and Porubov [30], and Madsen,

Murray and Sørensen [37] showed that improved formulations sacrifice complete

integrability, though they maintain well-posedness and offer enhanced modeling

capabilities for practical applications.

2.2. Standard tanh method and others
A variety of methods have been developed to solve the Boussinesq equation and

other solitary wave-describing families of nonlinear partial differential equations.

These include powerful techniques that directly deal with the partial differential

equations such as inverse scattering transform [38], Bäcklund transform [39],

and Hirota’s bilinear method [40–42]. However, simpler methods such as direct

integration [43], homogeneous balance method [44], sine-Gordon expansion

[45,46], and tanh-function method [2], [3] have also proven effective in obtaining

exact and analytic solutions. These methods capitalize on the straightforward

nature of hyperbolic and exponential functions to model traveling waves, and

of trigonometric functions to represent periodic waves, which solitary wave-

describing equations readily accommodate. By adopting a traveling wave frame

of reference, the partial differential equation is transformed into an ordinary

differential equation from which closed-form solutions in terms of these tran-

scendental functions are sought [19,23].
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Due to simplicity, the original tanh-based method has since been extended

and modified in certain directions to obtain more exact traveling wave solutions.

This includes the coth extension [47,48], hyperbolic-function generalization

[49,50], trigonometric [19,51] and exponential [52] reformulations, and gener-

alizations to Riccati equation expansion [53,54] and projection [55–58]. The

lattermost method can obtain new families of exact solutions including non-

traveling wave soliton-like ones among others.

Building upon the solution methods discussed previously, the standard

tanh-function method introduced by Malfliet in @malfliet1996-1 @malfliet1996-2

emerges as a particularly accessible technique that has become foundational

to modern analytical approaches for nonlinear wave equations. This method

involves transforming the pde into a nonlinear ode through the transformation

𝑢(𝑥, 𝑡) → 𝑈(𝜉),

𝜉 = 𝜇(𝑥 − 𝑐𝑡), (2.2)

where 𝑐 and 𝜇 represent arbitrary real constants typically interpreted as wave

speed and wave number, respectively, and introduces the function

𝑌 (𝜉) = tanh 𝜉. (2.3)

This function was specifically chosen for its self-similarity in the context of dif-

ferentiation. That is, when differentiated repeatedly, the tanh functions assume

the form of slight variations of itself and transforms to sech quite easily as in

d𝜉𝑌 = sech2 𝜉 = 1 − 𝑌 2,

d2
𝜉𝑌 = −2𝑌 + 2𝑌 3,

d3
𝜉𝑌 = −2 + 8𝑌 2 − 6𝑌 4,

⋮ (2.4)

allowing us to derive a set of algebraic functions 𝑈  that represent various orders

of derivatives

𝑈 = 𝑆(𝑌 ) = ∑
𝑀

𝑘=0
𝑎𝑘𝑌 𝑘, (2.5)
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which will serve as the solution to the pde to which we are applying this method.

Here, the coefficients 𝑎𝑘 are real constants to be determined, and 𝑀  is a positive

integer that can be extracted by balancing terms and derivatives.

The standard tanh method encompasses the following steps:

1. transforming the pde into a nonlinear ode,

2. solving the resulting derivatives,

3. balancing the highest order nonlinear term with the highest order derivative,

4. deriving and solving a nonlinear system of equations for coefficients and

parameters, and

5. substituting the solutions for these coefficients and parameters back into the

nonlinear ode.

2.3. Recent works on generalized tanh method
Recent studies have explored generalization of the standard tanh method to

address limitations when applied to forced or inhomogeneous nonlinear pdes.

Domingo and Dingel [5,59] continued formulating the generalized half-angle

tanh (g-hath) ansatz, which is exactly the introductory function 𝑌𝑝 that we

have, demonstrating its application to forced versions of the Huxley equation

and showing how solutions with tunable parameter 𝑝 reduce to standard tanh

solutions when 𝑝 = 1. This approach has been successfully extended to other

equations: Parel and Dingel [6] applied the method to inhomogeneous Burgers-

Fisher equations, Hao and Dingel [7] addressed forced Sine-Gordon equations,

and Bayan and Dingel [60] tackled inhomogeneous Fisher equations the gener-

alized approach. Most recently, Cornista and Dingel is reportedly proposing

further modifications to this method for polynomial nonlinear evolution equa-

tions, obtaining solutions that cannot be derived through standard tanh or

tanh-coth methods when applied to the Benjamin-Bona-Mahony equation.

Despite these advances, existing generalizations have primarily employed

truncated series expansions using only positive powers of the ansatz function 𝑌 ,
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which limits the solution space to tanh and sech functions (and their correspond-

ing trigonometric analogues). This constraint restricts the diversity of obtainable

wave solutions. This work extends these generalizations by incorporating both

positive and negative powers in the series expansion, thereby broadening the

solution space to include coth and csch as well as their combinations, providing

a more comprehensive framework for generating diverse solution families to

classical integrable equations like the Boussinesq equation.
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3. Methodology
In this section, we present our proposed generalization of the tanh-function

method and a novel extension of this generalization. These methods are devel-

oped to obtain new tunable soliton, periodic, and other traveling wave solutions

for forced Boussinesq equation.

As discussed in Section 2, we build upon the tanh-function method due to

its inherent simplicity and capacity to generate a diverse range of solutions. The

standard tanh method, while primarily limited to single-soliton solutions unlike

methods that produce multiple-soliton solutions, offers adaptability and ease of

implementation that make it an ideal foundation and starting point for exten-

sions. Furthermore, the clear algebraic structure arising from tanh derivatives

simplifies the process of finding and classifying solutions.

3.1. Generalization of the tanh method
Building upon the standard tanh-function approach, we replace the traditional

introductory function 𝑌  with a novel ansatz first presented by Buenaventura,

Dingel and Calgo in [4], inspired by the half-angle identity in tanh-function and

parametrized by a tunable parameter 𝑝

𝑌𝑝,𝜉 = 𝑌𝑝(𝜇𝜉) = (1 + 𝑝)
tanh 𝜇𝜉

2
1 + 𝑝 tanh2 𝜇𝜉

2

, 0 ≤ 𝑝 ≤ 1, 𝑝 ∈ ℝ. (3.1)

The key feature of this ansatz is the tunable parameter 𝑝. It could allow for

solutions to be either adaptively tailored to the specific problem at hand or

precisely fine-tuned to meet specific conditions. Following Malfliet’s approach

outlined in Figure 3, we transform the pde

𝑝(𝑢, 𝜕𝑡𝑢, 𝜕𝑥𝑢, 𝜕2
𝑡 𝑢, 𝜕2

𝑥𝑢, 𝜕𝑥𝜕𝑡𝑢, …) = 0 (3.2)

into a nonlinear ordinary differential equation

𝑃(𝑈, d𝜉𝑈, d2
𝜉𝑈, …) = 0 (3.3)
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together with their respective solutions 𝑢(𝑥, 𝑡) and 𝑈(𝜉) using the variable

𝜉 = 𝑥 − 𝑐𝑡. (3.4)

Assuming the integration constants vanish, we iteratively integrate this ode until

the desired order is achieved, say until

∫ ⋯ ∫ 𝑃(𝑈, d𝜉𝑈, d2
𝜉𝑈, d3

𝜉𝑈, …; 𝑌 ) = 0, (3.5)

as long as all terms retain derivatives. We then compute for the higher-order

derivatives

d𝜉, d2
𝜉 , d3

𝜉 , …, d𝑛
𝜉

(3.6)

with the highest order 𝑛 present in the integrated ode in (3.5). Note that this

computation is particularly cumbersome.

Next, we assume that the series

𝑈 = 𝑆(𝑌 ) = ∑
𝑀

𝑘=0
𝑎𝑘𝑌 𝑘, (3.7)

remains admissible as a solution under this generalized tanh method, allowing

𝑢(𝑥, 𝑡) = 𝑈(𝜉) = 𝑆(𝑌 ) (3.8)

to also be a solution to the ode. We balance the highest order nonlinear term

with the highest order derivative following the mappings

𝑢 → 𝑀, 𝑢2 → 2𝑀, …, 𝑢𝑛 → 𝑛𝑀;

𝜕𝑢 → 𝑀 + 1, 𝜕2𝑢 → 𝑀 + 2, …, 𝜕𝑟𝑢 → 𝑀 + 𝑟. (3.9)

We employ this to balance the highest order nonlinear term with the highest

order derivative in the integrated ode in (3.5) and determine the balance constant

𝑀  to use in (3.7). We reject any non-positive integer 𝑀  and adjust in the

integration step accordingly. If inconvenient, we apply the transformation

𝑈(𝜉) = 𝜑𝑀𝜉, (3.10)

then substitute it back and attempt to determine 𝑀  again as long as 𝑀  is a

fraction or a negative integer as suggested in [57].
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We then substitute the computed derivatives and the series in (3.7) with the

determined 𝑀  into the integrated ode, grouping terms according to their powers

in 𝑌 . For terms with non-integral powers of 𝑌 , we introduce forcing functions

𝐹(𝑌 ) to eliminate them resulting in

∫ ⋯ ∫ 𝑃(𝑈, d𝜉𝑈, d2
𝜉𝑈, d3

𝜉𝑈, …; 𝑌 ) = 𝐹(𝑌 ). (3.11)

This transforms our ode, and by extension the pde, into a forced version. To be

consistent for all values of 𝑌 , the coefficient expressions must each equate to zero.

This results in a nonlinear system of algebraic equations for the mathematical

coefficients 𝑎𝑛 for 𝑛 ≥ 0, 𝑛 ∈ ℤ and physical coefficients such as the wave number

𝜇. We then solve this system by hand, and utilize a computer algebra system

such as the free and open-source Sage for tedious calculations when needed.

Finally, we substitute the determined solutions for the coefficients and

parameters back into the integrated ode, apply restricting conditions where

necessary, and obtain a set of tunable soliton and plane periodic solutions.

3.2. Extension of the generalized tanh method
In the previous method, we only have algebraic terms in positive powers of Y in

the finite series in (3.7), which restricted the solution space to tanh and sech-

based solutions. To explore a broader set of solutions, particularly those based

on coth and csch, we extend the series to

𝑆(𝑌 ) = ∑
𝑀

𝑘=0
𝑎𝑘𝑌 𝑘 + ∑

𝑀

𝑘=1
𝑏𝑘𝑌 −𝑘, (3.12)

as inspired by an extension of the tanh method presented in [47,48]. To the best

of our knowledge, this specific method has not been previously reported in the

literature.¹

¹A paper detailing initial results of the application of this method has been submitted to
the proceedings of the 43rd Samahang Pisika ng Pilipinas Physics Conference (June 2025) but
is currently under review.
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3.3. Application to the Boussinesq equation
After formulating our proposed generalization of the tanh-function method along

with its extension, we implement both methods to obtain new tunable solutions

to the classical form of the Boussinesq equation with 𝛼 = 3 and 𝛽 = 1 [8,9,23]

𝜕2
𝑡 𝑢 − 𝑐2𝜕2

𝑥𝑢 − 𝛼𝜕2
𝑥𝑢2 − 𝛽𝜕4

𝑥𝑢 = 0. (3.13)

The detailed application of these methods to derive specific solution families is

presented in the following chapter, where we systematically work through the

computational steps and analyze the resulting solutions.
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4. Results and Discussion
This chapter presents our findings from applying our novel generalized tanh-

function method and its extension to the classical Boussinesq equation. We

report the derivation of new tunable exact solutions, including soliton, non-

soliton traveling wave, and plane periodic solutions. We also analyze the tunable

parameter 𝑝 introduced in our methods and discuss its impact on the charac-

teristics of the solutions.

4.1. Solutions via standard tanh method
We first addressed the classical Boussinesq equation given by

𝜕2
𝑡 𝑢 − 𝜕2

𝑥𝑢 − 𝜕2
𝑥(3𝑢2) − 𝜕4

𝑥𝑢 = 0 (4.1)

using the standard tanh method. Following the procedure outlined in Section 3,

we transformed this nonlinear pde to a nonlinear ode through the transformation

𝜉 = 𝜇(𝑥 − 𝑐𝑡) yielding

𝑐2d2
𝜉𝑢 − d2

𝜉𝑢 − 3d2
𝜉𝑢2 − d4

𝜉𝑢 = 0 (4.2)

where 𝑐 and 𝜇 represent wave speed and wave number, respectively. We then

iteratively integrated this ode twice wrt 𝜉 as follows

(𝑐2 − 1)d2
𝜉𝑢 − 3d2

𝜉𝑢2 − d4
𝜉𝑢 = 0

⟹ (𝑐2 − 1)d𝜉𝑢 − 3d𝜉𝑢2 − d3
𝜉𝑢 = 0

⟹ (𝑐2 − 1)𝑢 − 3𝑢2 − d2
𝜉𝑢 = 0. (4.3)

To determine the balance coefficient, we balanced the highest-order nonlinear

term with highest-order derivative following the previously discussed mapping

and obtained

𝑢2 = d2
𝜉𝑢

⟹ 2𝑀 = 𝑀 + 2

𝑀 = 2. (4.4)

Recall that this method admits the use of the series substitution

16



𝑢(𝑥, 𝑡) = 𝑆(𝑌 ) = ∑
𝑀

𝑖=0
𝑎𝑖𝑌𝑖

⟹ 𝑈(𝑥, 𝑡) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2 (4.5)

as solution to the ode, and consequently the pde, based on the new independent

variable

𝑌 (𝜉) = tanh 𝜉. (4.6)

This ansatz was introduced by Malfliet in [2,3]. We computed the first and

second derivatives wrt 𝜉 and got

d𝜉 = d𝜉𝑌 · d𝑌

= d𝜉 tanh 𝜇𝜉 · d𝑌

= 𝜇(1 − 𝑌 2) · d𝑌
(4.7)

since

d𝜉 tanh 𝜇𝜉 = 𝜇 sech2 𝜇𝜉

= 𝜇(1 − tanh2 𝜇𝜉)

= 𝜇(1 − 𝑌 2), (4.8)

and

d2
𝜉 = d𝜉 · (d𝜉𝑌 · d𝑌 )

= 𝜇(1 − 𝑌 2) · d𝑌 [𝜇(1 − 𝑌 2) · d𝑌 ]

= 𝜇(1 − 𝑌 2)[𝜇(1 − 𝑌 2) · d2
𝑌 + 𝜇(0 − 2𝑌 ) · d𝑌 ]

= −2𝜇2𝑌 (1 − 𝑌 2) · d𝑌 + 𝜇2(1 − 𝑌 2)2 · d2
𝑌 . (4.9)

Substituting this derivative and the series into the ode, and grouping terms by

powers of 𝑌 , we obtained

0 = (𝑐2 − 1)(𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2)

−3(𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2)2

−(−2𝜇2𝑌 (1 − 𝑌 2) · d𝑌 + 𝜇2(1 − 𝑌 2)2 · d2
𝑌 )(𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2)

= (𝑐2 − 1)𝑎0 + (𝑐2 − 1)𝑎1𝑌 + (𝑐2 − 1)𝑎2𝑌 2
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−3[𝑎2
0 + 2𝑎0𝑎1𝑌 + 2𝑎0𝑎2𝑌 2 + 2𝑎1𝑎2𝑌 3 + 𝑎2

2𝑌 4

+𝑎2
1𝑌 2 ]

−(−2𝜇2)[ 𝑎1𝑌 + 2𝑎2𝑌 2 − 𝑎1𝑌 3 − 2𝑎2𝑌 4]

−𝜇2[2𝑎2 − 4𝑎2𝑌 2 + 2𝑎2𝑌 4]

= [(𝑐2 − 1)𝑎0 − 3𝑎2
0 − 2𝜇2𝑎2]

+𝑌 [(𝑐2 − 1)𝑎1 − 6𝑎0𝑎1 + 2𝜇2𝑎1]

+𝑌 2[(𝑐2 − 1)𝑎2 − 6𝑎0𝑎2 + 8𝜇2𝑎2 − 3𝑎2
1]

+𝑌 3[−6𝑎1𝑎2 − 2𝜇2𝑎1]

+𝑌 4[−3𝑎2
2 − 6𝜇2𝑎2]. (4.10)

Equating the coefficients of each power of 𝑌  to 0, we formed the following system

of equations

𝑌 0 : 0 = (𝑐2 − 1)𝑎0 − 3𝑎2
0 − 2𝜇2𝑎2

𝑌 1 : 0 = (𝑐2 − 1)𝑎1 − 6𝑎0𝑎1 + 2𝜇2𝑎1

𝑌 2 : 0 = (𝑐2 − 1)𝑎2 − 6𝑎0𝑎2 + 8𝜇2𝑎2 − 3𝑎2
1

𝑌 3 : 0 = −6𝑎1𝑎2 − 2𝜇2𝑎1

𝑌 4 : 0 = −3𝑎2
2 − 6𝜇2𝑎2, (4.11)

which we then solved to compute the coefficients needed for the ode. Solving by

hand, we obtained the set of solutions

𝑦0 : 𝜇 = 𝑚 ∈ ℝ, 𝑎0 = 0, 1
3
(𝑐2 − 1), 𝑎1 = 0, 𝑎2 = 0

𝑦1 : 𝜇 = ±1
2
√

𝑐2 − 1, 𝑎0 = 1
2
(𝑐2 − 1), 𝑎1 = 0, 𝑎2 = 1

2
(1 − 𝑐2)

𝑦2 : 𝜇 = ±1
2
√

1 − 𝑐2, 𝑎0 = 1
6
(1 − 𝑐2), 𝑎1 = 0, 𝑎2 = 1

2
(𝑐2 − 1). (4.12)

Note that some solutions were paired, with with parity being the only distin-

guishing characteristic. Substituting these solutions back into the nonlinear pde

yielded physically realizable results.

Specifically, while 𝑦0 gives trivial solutions, 𝑦1 and 𝑦2 where 𝑐2 > 1 (super-

critical wave speed) give the soliton solutions
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𝑢1(𝑥, 𝑡)std = 𝑐2 − 1
2

[1 − tanh2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

sech2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡)) (4.13)

𝑢2(𝑥, 𝑡)std = −𝑐2 − 1
6

[1 − 3 tanh2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]. (4.14)

In the opposite regime, where 𝑐2 < 1 (subcritical wave speed), 𝑦1 and 𝑦2 give

the plane periodic solutions

𝑢3(𝑥, 𝑡)std = 𝑐2 − 1
2

[1 + tan2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

sec2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡)) (4.15)

𝑢4(𝑥, 𝑡)std = −𝑐2 − 1
6

[1 + 3 tan2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]. (4.16)

We note that 𝑢1, 𝑢2, 𝑢3, 𝑢4 correspond to the solutions found in [19]. These

solutions, plotted in Figure 4, represent the baseline results obtainable with the

most fundamental tanh-function approach. Solutions 𝑢1 and 𝑢2 are the classic

bell-shaped soliton, a localized wave of elevation maintaining its shape. Solutions

𝑢3 and 𝑢4 represent a train of periodic waves with singularities. These forms are

well-documented and serve as our benchmark.

The standard tanh method, while effective for finding these fundamental

solutions, is limited because the solution forms are fixed once the balance

coefficient 𝑀  is determined. It does not offer inherent tunability beyond the

wave speed 𝑐.
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(a): 𝑢1,std : 𝑐 = 2, |𝑥| ≤ 10 (b): 𝑢2,std : 𝑐 = 1
2 , |𝑥| ≤ 10

(c): 𝑢3,std : 𝑐 = 2, |𝑥| ≤ 10 (d): 𝑢4,std : 𝑐 = 1
2 , |𝑥| ≤ 10

Figure 4:  Plots of the solutions to the classical Boussinesq equation via standard

tanh method, with 𝑡 = 0, 2, 4.

4.2. Solutions via extended standard tanh method
To explore a broader solution space, we employed the extended standard tanh

method. This involves using a longer series expansion

𝑢(𝑥, 𝑡) = 𝑆(𝑌 ) = ∑
𝑀

𝑘=0
𝑎𝑘𝑌 𝑘 + ∑

𝑀

𝑘=1
𝑏𝑘𝑌 −𝑘

⟹ 𝑈(𝑥, 𝑡) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2 + 𝑏1𝑌 −1 + 𝑏2𝑌 −2 (4.17)

which incorporates terms with negative powers of 𝑌  giving us

0 = (𝑐2 − 1)(𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2 + 𝑏1𝑌 −1 + 𝑏2𝑌 −2)

−3(𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2 + 𝑏1𝑌 −1 + 𝑏2𝑌 −2)2
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−(−2𝜇2𝑌 (1 − 𝑌 2) · d𝑌 + 𝜇2(1 − 𝑌 2)2 · d2
𝑌 )

(𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2 + 𝑏1𝑌 −1 + 𝑏2𝑌 −2).

This extension allows for solutions involving coth and csch functinos, in addition

to tanh and sech functions. The resulting system of equations is larger and

contains more unknown coefficients

𝑌 −4 : −6𝑏2𝜇2 − 3𝑏2
2 = 0

𝑌 −3 : −2𝑏1𝜇2 − 6𝑏1𝑏2 = 0

𝑌 −2 : 𝑏2𝑐2 + 8𝑏2𝜇2 − 3𝑏2
1 − 6𝑎0𝑏2 − 𝑏2 = 0

𝑌 −1 : 𝑏1𝑐2 + 2𝑏1𝜇2 − 6𝑎0𝑏1 − 6𝑎1𝑏2 − 𝑏1 = 0

𝑌 0 : 𝑎0𝑐2 − 2𝑎2𝜇2 − 2𝑏2𝜇2 − 3𝑎2
0 − 6𝑎1𝑏1 − 6𝑎2𝑏2 − 𝑎0 = 0

𝑌 1 : 𝑎1𝑐2 + 2𝑎1𝜇2 − 6𝑎0𝑎1 − 6𝑎2𝑏1 − 𝑎1 = 0

𝑌 2 : 𝑎2𝑐2 + 8𝑎2𝜇2 − 3𝑎2
1 − 6𝑎0𝑎2 − 𝑎2 = 0

𝑌 3 : −2𝑎1𝜇2 − 6𝑎1𝑎2 = 0

𝑌 4 : −6𝑎2𝜇2 − 3𝑎2
2 = 0. (4.18)

Solving this system yielded the following set of solutions

𝑦0 : 𝜇 = 𝑚 ∈ ℝ, 𝑎0 = 0, 1
3
(𝑐2 − 1), 𝑎1 = 0, 𝑎2 = 0,

𝑏1 = 0, 𝑏2 = 0

𝑦1 : 𝜇 = ±1
2
√

𝑐2 − 1, 𝑎0 = 1
2
(𝑐2 − 1), 𝑎1 = 0, 𝑎2 = 1

2
(1 − 𝑐2),

𝑏1 = 0, 𝑏2 = 0

𝑦2 : 𝜇 = ±1
2
√

1 − 𝑐2, 𝑎0 = 1
6
(1 − 𝑐2), 𝑎1 = 0, 𝑎2 = 1

2
(𝑐2 − 1),

𝑏1 = 0, 𝑏2 = 0

𝑦3 : 𝜇 = ±1
2
√

𝑐2 − 1, 𝑎0 = 1
2
(𝑐2 − 1), 𝑎1 = 0, 𝑎2 = 0,

𝑏1 = 0, 𝑏2 = 1
2
(1 − 𝑐2)

𝑦4 : 𝜇 = ±1
2
√

1 − 𝑐2, 𝑎0 = 1
6
(1 − 𝑐2), 𝑎1 = 0, 𝑎2 = 0, (4.19)
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𝑏1 = 0, 𝑏2 = 1
2
(𝑐2 − 1)

𝑦5 : 𝜇 = ±1
4
√

𝑐2 − 1, 𝑎0 = 1
4
(𝑐2 − 1), 𝑎1 = 0, 𝑎2 = 1

8
(1 − 𝑐2),

𝑏1 = 0, 𝑏2 = 1
8
(1 − 𝑐2)

𝑦6 : 𝜇 = ±1
4
√

1 − 𝑐2, 𝑎0 = 1
12

(𝑐2 − 1), 𝑎1 = 0, 𝑎2 = 1
8
(𝑐2 − 1),

𝑏1 = 0, 𝑏2 = 1
8
(𝑐2 − 1). (4.19)

As before, some solutions are paied due to their similarities, differing only in

parity. Substituting these solutions back into the nonlinear pde yields meaningful

results.

For 𝑐2 > 1 (supercritical case), 𝑦0 yields trivial solutions, while 𝑦1 and 𝑦2

yield the soliton solutions

𝑢1(𝑥, 𝑡)ext std = 𝑐2 − 1
2

sech2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡)) (4.20)

𝑢2(𝑥, 𝑡)ext std = −𝑐2 − 1
6

[1 − 3 tanh2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))], (4.21)

whereas 𝑦3 and 𝑦4 yielded the non-soliton traveling wave solutions

𝑢3(𝑥, 𝑡)ext std = −𝑐2 − 1
2

csch2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡)) (4.22)

𝑢4(𝑥, 𝑡)ext std = −𝑐2 − 1
6

[1 − 3 coth2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]. (4.23)

Although 𝑦5 and 𝑦6 initially appear to produce distinct solutions, they do not

represent new 2-soliton solutions. The presence of the two terms and the lack

of genuine uniqueness, reveals that they are in fact equivalent to previously

established solutions as in

𝑢5(𝑥, 𝑡)ext std = −𝑐2 − 1
8

[coth2(
√

𝑐2 − 1
4

(𝑥 − 𝑐𝑡)) (4.24)
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+ tanh2(
√

𝑐2 − 1
4

(𝑥 − 𝑐𝑡)) − 2]

= −𝑐2 − 1
2

csch2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))

= 𝑢3(𝑥, 𝑡)ext std
(4.24)

𝑢6(𝑥, 𝑡)ext std = 𝑐2 − 1
24

[3 coth2(
√

1 − 𝑐2

4
(𝑥 − 𝑐𝑡))

+3 tanh2(
√

1 − 𝑐2

4
(𝑥 − 𝑐𝑡)) + 2]

= 𝑢4(𝑥, 𝑡)ext std. (4.25)

For the opposite regime where 𝑐2 < 1 (subcritical case), 𝑦1, 𝑦2, 𝑦3 and 𝑦4 give

the plane periodic solutions

𝑢7(𝑥, 𝑡)ext std = 𝑐2 − 1
2

sec2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡)) (4.26)

𝑢8(𝑥, 𝑡)ext std = −𝑐2 − 1
6

[1 + 3 tan2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))] (4.27)

𝑢9(𝑥, 𝑡)ext std = 𝑐2 − 1
2

csc2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡)) (4.28)

𝑢10(𝑥, 𝑡)ext std = −𝑐2 − 1
6

[1 + 3 cot2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))] (4.29)

Again, 𝑦5 and 𝑦6 in this regime lead to non-unique solutions because

𝑢11(𝑥, 𝑡)ext std = 𝑐2 − 1
8

[cot2(
√

1 − 𝑐2

4
(𝑥 − 𝑐𝑡)) + tan2(

√
1 − 𝑐2

4
) + 2]

= 𝑐2 − 1
2

csc2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))

= 𝑢9(𝑥, 𝑡)ext std
(4.30)

𝑢12(𝑥, 𝑡)ext std = −𝑐2 − 1
24

[3 cot2(
√

𝑐2 − 1
4

(𝑥 − 𝑐𝑡)) (4.31)
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+3 tan2(
√

𝑐2 − 1
4

(𝑥 − 𝑐𝑡)) − 2]

= 𝑢10(𝑥, 𝑡)ext std. (4.31)

(a): 𝑢3,ext std : 𝑐 = 2, |𝑥| ≤ 10 (b): 𝑢4,ext std : 𝑐 = 1
2 , |𝑥| ≤ 10

(c): 𝑢9,ext std : 𝑐 = 2, |𝑥| ≤ 10 (d): 𝑢10,ext std : 𝑐 = 1
2 , |𝑥| ≤ 10

Figure 5:  Plots of the additional solutions to the classical Boussinesq equation

via extended standard tanh method, with 𝑡 = 0, 2, 4. The other solutions are

found in Figure 4.

The solutions 𝑢3 and 𝑢9 involving csch and csc functions, plotted in Figure 5,

often represent waves with singularities or different asymptotic behaviors com-

pared to the sech or sec type solutions. The inclusion of 𝑌 −𝑘 terms effectively

doubles the set of obtainable solution forms. The algebraic manipulations be-

come more involved, and the use of a computer algebra system (cas), SageMath

as our particular choice, was noted as beneficial for solving the resulting system

of equations for the coefficients.
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This step confirmed the power of the extended method in uncovering a richer

variety of exact solutions, all of which are consistent with existing literature

[19]. It also highlighted that some combinations of coefficients might lead to

redundant solutions, as seen with 𝑢5 and 𝑢6.

4.3. Computing the derivatives d𝜉, d2
𝜉

The core of our generalization lies in the novel ansatz

𝑌𝑝,𝜉 = 𝑌𝑝(𝜇𝜉) = (1 + 𝑝)
tanh 𝜇𝜉

2
1 + 𝑝 tanh2 𝜇𝜉

2

, 0 ≤ 𝑝 ≤ 1, 𝑝 ∈ ℝ. (4.32)

introduced as a new independent variable where 𝜉 = 𝑥 − 𝑐𝑡 and 𝜇 is wave

number. To substitute this ansatz into the ode derived from the Boussinesq

equation, we expressed its derivatives d𝜉𝑌𝑝 and d2
𝜉𝑌𝑝 in terms of 𝑌𝑝 itself. This

subsection details this crucial mathematical step.

The derivation involved an auxiliary variable transformation

tanh 𝜇𝜉
2

= 1
√𝑝

tanh 𝜇𝜔
2

⟹ 𝑌𝑝,𝜉 = (1 + 𝑝)

1
√𝑝

tanh 𝜇𝜔
2

1 + 𝑝1
𝑝

tanh2 𝜇𝜔
2

= 𝑝 + 1
2√𝑝

2 tanh 𝜇𝜔
2

1 + tanh2 𝜇𝜔
2

= 𝑝 + 1
2√𝑝

tanh 𝜇𝜔

= 𝑌𝑝(𝜔) ≡ 𝑌𝑝,𝜔. (4.33)

Note that d𝜉 = d𝜔𝑌𝑝 ⋅ d𝑌𝑝
= d𝜉𝜔 ⋅ d𝜔𝑌𝑝 ⋅ d𝑌𝑝

 and 𝜔 = 2
𝜇 arctanh(√𝑝 tanh 𝜇𝜉

2 ).

Applying the chain rule, we first computed

d𝜔𝑌𝑝 = d𝜔𝑌𝑝,𝜔

= 𝑝 + 1
2√𝑝

𝜇(1 − tanh2 𝜇𝜔) (4.34)
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= 𝑝 + 1
2√𝑝

𝜇
[
[
[1 − (

2√𝑝
𝑝 + 1

)
2

(𝑝 + 1
2√𝑝

)
2

tanh2 𝜇𝜔
]
]
]

= 𝑝 + 1
2√𝑝

𝜇[1 − (
2√𝑝
𝑝 + 1

)
2

𝑌 2
𝑝,𝜔]

= 𝑝 + 1
2√𝑝

(
2√𝑝
𝑝 + 1

)
2

𝜇
[
[
[(𝑝 + 1

2√𝑝
)

2

− 𝑌 2
𝑝,𝜔

]
]
]

= 𝜇
𝑞𝑝

(𝑞2
𝑝 − 𝑌 2

𝑝,𝜔) (4.34)

where 𝑞𝑝 ≡ 𝑝+1
2√𝑝 . Next, we computed

d𝜉𝜔 = 1
√𝑝

𝑝 − tanh2 𝜇𝜔
2

1 − tanh2 𝜇𝜔
2

= 1
√𝑝

𝑝 + 1
2

[
[
[

(1 − 1) +
2𝑝 − 2 tanh2 𝜇𝜔

2
(𝑝 + 1)(1 − tanh2 𝜇𝜔

2
)

]
]
]

= 1
√𝑝

𝑝 + 1
2

[
[
[

1 +
−(𝑝 − 1)(1 − tanh2 𝜇𝜔

2
) + 2𝑝 − 2 tanh2 𝜇𝜔

2
(𝑝 + 1)(1 − tanh2 𝜇𝜔

2
)

]
]
]

= 1
√𝑝

𝑝 + 1
2

[
[
[

1 +
(𝑝 − 1)(1 + tanh2 𝜇𝜔

2
)

(𝑝 + 1)(1 − tanh2 𝜇𝜔
2

)
]
]
]

= 1
√𝑝

𝑝 + 1
2

{{
{{
{{
{

1 + 𝑝 − 1
𝑝 + 1

[
[[
[

(
((
(1 − tanh2 𝜇𝜔

2
1 + tanh2 𝜇𝜔

2 )
))
)

2

]
]]
]

1/2

}}
}}
}}
}

. (4.35)

To simplify the innermost term, we have

(
((
(1 − tanh2 𝜇𝜔

2
1 + tanh2 𝜇𝜔

2 )
))
)

2

=
1 − 2 tanh2 𝜇𝜔

2
+ tanh4 𝜇𝜔

2
(1 + tanh2 𝜇𝜔

2
)

2

=
1 + 2 tanh2 𝜇𝜔

2
+ tanh4 𝜇𝜔

2
− 4 tanh2 𝜇𝜔

2
(1 + tanh2 𝜇𝜔

2
)

2
(4.36)
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=
(1 + tanh2 𝜇𝜔

2
)

2
− 4 tanh2 𝜇𝜔

2
(1 + tanh2 𝜇𝜔

2
)

2

= 1 −
4 tanh2 𝜇𝜔

2
(1 + tanh2 𝜇𝜔

2
)

2

= 1 − tanh2 𝜇𝜔

= (
2√𝑝
𝑝 + 1

)
2

[
[
[(𝑝 + 1

2√𝑝
)

2

− (𝑝 + 1
2√𝑝

)
2

tanh2 𝜇𝜔
]
]
]

= 1
𝑞2
𝑝
(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉). (4.36)

With 𝑟𝑝 ≡ 𝑝−1
2√𝑝 = 𝑝−1

𝑝+1𝑞𝑝, we obtained

d𝜉𝜔 = 𝑞𝑝[1 + 𝑝 − 1
𝑝 + 1

𝑞𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
−1/2

]

= 𝑞𝑝[1 + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
−1/2

]. (4.37)

Finally, the resulting expressions for the first and second derivatives were

d𝜉 = d𝜉𝜔 ⋅ d𝜔𝑌𝑝 ⋅ 𝑑𝑌𝑝

= 𝑞𝑝[1 + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
−1/2

] 𝜇
𝑞𝑝

(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)d𝑌𝑝

= 𝜇[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]d𝑌𝑝
(4.38)

and

d2
𝜉 = d𝜉{𝜇[(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉) + 𝑟𝑝(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉)

1/2
]d𝑌𝑝

}

= 𝜇[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]

d𝑌𝑝
{𝜇[(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉) + 𝑟𝑝(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉)

1/2
]d𝑌𝑝

}

= 𝜇[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]

{𝜇[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]d2
𝑌𝑝

(4.39)
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+𝜇[(0 − 2𝑌𝑝,𝜉) + 𝑟𝑝
1
2
(0 − 2𝑌𝑝,𝜉)(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉)

−1/2
]d𝑌𝑝

}

= 𝜇2[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]
2
d2

𝑌𝑝

+𝜇2[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]

[−2𝑌𝑝,𝜉 − 𝑟𝑝𝑌𝑝,𝜉(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
−1/2

]d𝑌𝑝
. (4.39)

This computation provides an improvement in conciseness over previous the

operational rules for how derivatives of 𝑢(𝑥, 𝑡), expressed as a series in 𝑌𝑝,

transform. It is also an improvement in conciseness compared to previous work

[5]. The complexity of these derivative operators, particularly the appearance

of terms like (𝑞2
𝑝 − 𝑌 2

𝑝 )
1
2 , highlights the algebraic intricacy of the generalized

method. This explains the necessity of introducing a forcing function 𝐹(𝑌𝑝) when

𝑝 ≠ 1. Accurate derivative forms are essential for the subsequent application of

the generalized method.

4.4. Solutions via generalized tanh method
Having explored the fundamental solutions of the classical Boussinesq equation

using the standard and extended standard tanh methods, and with the derivative

operators now established, we proceeded to apply the generalized tanh method.

The classical Boussinesq equation

𝜕2
𝑡 𝑢 − 𝜕2

𝑥𝑢 − 𝜕2
𝑥(3𝑢2) − 𝜕4

𝑥𝑢 = 0 (4.40)

was transformed into a nonlinear ode via the transformation 𝜉 = 𝜇(𝑥 − 𝑐𝑡) as

detailed in Figure 3 which yielded

𝑐2d2
𝜉𝑢 − d2

𝜉𝑢 − 3d2
𝜉𝑢2 − d4

𝜉𝑢 = 0 (4.41)

where 𝑐 and 𝜇 represent wave speed and wave number, respectively. We inte-

grated this ode wrt 𝜉 twice as in

(𝑐2 − 1)d2
𝜉𝑢 − 3d2

𝜉𝑢2 − d4
𝜉𝑢 = 0

⟹ (𝑐2 − 1)d𝜉𝑢 − 3d𝜉𝑢2 − d3
𝜉𝑢 = 0 (4.42)
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⟹ (𝑐2 − 1)𝑢 − 3𝑢2 − d2
𝜉𝑢 = 0. (4.42)

Balancing the highest-order nonlinear term with highest-order derivative as per

the previously discussed mapping, we got

𝑢2 = d2
𝜉𝑢

⟹ 2𝑀 = 𝑀 + 2

𝑀 = 2. (4.43)

This method admits the use of the series substitution

𝑢(𝑥, 𝑡) = 𝑆(𝑌 ) = ∑
𝑀

𝑖=0
𝑎𝑖𝑌𝑖

⟹ 𝑈(𝑥, 𝑡) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2 (4.44)

as solution to the ode, and consequently the pde, based on the new independent

variable

𝑌𝑝,𝜉 = 𝑌𝑝(𝜇𝜉) = (1 + 𝑝)
tanh 𝜇𝜉

2

1 + 𝑝 tanh2 𝜇𝜉
2

, 0 ≤ 𝑝 ≤ 1, 𝑝 ∈ ℝ. (4.45)

as our ansatz. Recall the previously computed derivatives

d𝜉 = d𝜉𝜔 ⋅ d𝜔𝑌𝑝 ⋅ 𝑑𝑌𝑝

= 𝑞𝑝[1 + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
−1/2

] 𝜇
𝑞𝑝

(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)d𝑌𝑝

= 𝜇[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]d𝑌𝑝
(4.46)

and

d2
𝜉 = d𝜉 · (d𝜉𝑌 · d𝑌 )

= 𝜇2[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]
2
d2

𝑌𝑝

+𝜇2[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]

[−2𝑌𝑝,𝜉 − 𝑟𝑝𝑌𝑝,𝜉(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
−1/2

]d𝑌𝑝
. (4.47)

We substituted the series and the derivative expressions into the ode, and

grouped the terms by powers of 𝑌 , which yielded
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0 = (𝑐2 − 1)(𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2)

−3(𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2)2

+[𝜇2((𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

)
2

· d2
𝑌𝑝

+𝜇2((𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

)

(−2𝑌𝑝,𝜉 − 𝑟𝑝𝑌𝑝,𝜉(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
−1/2

) · d𝑌𝑝
]

(𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2) (4.48)

Equating coefficients of each power of 𝑌  to 0 resulted in the system of equations

𝑌 0
𝑝 : −2𝑎2𝜇2𝑞4 − 2𝑎2𝜇2𝑞2𝑟2 + 𝑎0𝑐2 − 3𝑎2

0 − 𝑎0 = 0

𝑌 1
𝑝 : 2𝑎1𝜇2𝑞2 + 𝑎1𝜇2𝑟2 + 𝑎1𝑐2 − 6𝑎0𝑎1 − 𝑎1 = 0

𝑌 2
𝑝 : 8𝑎2𝜇2𝑞2 + 4𝑎2𝜇2𝑟2 + 𝑎2𝑐2 − 3𝑎2

1 − 6𝑎0𝑎2 − 𝑎2 = 0

𝑌 3
𝑝 : −2𝑎1𝜇2 − 6𝑎1𝑎2 = 0

𝑌 4
𝑝 : −6𝑎2𝜇2 − 3𝑎2

2 = 0

𝑌 2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 : 2𝑎2𝜇2𝑞2𝑟 = 0

𝑌 3
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 : 𝑎1𝜇2𝑟 = 0

𝑌 4
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 : −2𝑎2𝜇2𝑟 = 0

𝑌 0
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 : −4𝑎2𝜇2𝑞2𝑟 = 0

𝑌 1
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 : 2𝑎1𝜇2𝑟 = 0

𝑌 2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 : 𝑎1𝜇2𝑞2𝑟 = 0. (4.49)

Importantly, terms involving non-integer powers of 𝑌𝑝, specifically those with

(𝑞2
𝑝 − 𝑌 2

𝑝 )±1
2 , emerged. These terms cannot be balanced by integer powers of

𝑌𝑝 alone. To address this, we introduce a forcing function 𝐹(𝑌𝑝) to isolate the

special terms

𝐹(𝑌 ) = 2𝑎2𝜇2𝑞2𝑟𝑌 2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 + 𝑎1𝜇2𝑟𝑌 3

𝑝 (𝑞2
𝑝 − 𝑌 2

𝑝 )−1/2 (4.50)
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−2𝑎2𝜇2𝑟𝑌 4
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 − 4𝑎2𝜇2𝑞2𝑟(𝑞2

𝑝 − 𝑌 2
𝑝 )1/2

+2𝑎1𝜇2𝑟𝑌𝑝(𝑞2
𝑝 − 𝑌 2

𝑝 )1/2 + 𝑎1𝜇2𝑞2𝑟𝑌 2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2

= [2𝑎2𝜇2𝑞2𝑟𝑌 2
𝑝 + 𝑎1𝜇2𝑟𝑌 3

𝑝 − 2𝑎2𝜇2𝑟𝑌 4
𝑝 ](𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2

+[−4𝑎2𝜇2𝑞2𝑟 + 2𝑎1𝜇2𝑟𝑌𝑝 + 𝑎1𝜇2𝑞2𝑟𝑌 2
𝑝 ](𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 (4.50)

which we note can be further simplified.

By equating the original nonlinear ode, and consequently the nonlinear pde,

to this forcing function, we obtain a forced version of the Boussinesq equation

(𝑐2 − 1)𝑢 − 3𝑢2 − d2
𝜉𝑢 = 𝐹(𝑌 )

⟹ 𝜕2
𝑡 𝑢 − 𝜕2

𝑥𝑢 − 𝜕2
𝑥(3𝑢2) − 𝜕4

𝑥𝑢 = 𝐹(𝑌 ). (4.51)

This modification allowed us to eliminate terms with non-integral powers of 𝑌 .

Importantly, the original, unforced Boussinesq equation is recovered by setting

𝑝 = 1, which makes 𝑟𝑝 = 0 and therefore 𝐹(𝑌𝑝) = 0.

Setting the forcing function aside, the remaining terms with integer powers

of 𝑌  yield this reduced system of equations

𝑌 0
𝑝 : −2𝑎2𝜇2𝑞4 − 2𝑎2𝜇2𝑞2𝑟2 + 𝑎0𝑐2 − 3𝑎2

0 − 𝑎0 = 0

𝑌 1
𝑝 : 2𝑎1𝜇2𝑞2 + 𝑎1𝜇2𝑟2 + 𝑎1𝑐2 − 6𝑎0𝑎1 − 𝑎1 = 0

𝑌 2
𝑝 : 8𝑎2𝜇2𝑞2 + 4𝑎2𝜇2𝑟2 + 𝑎2𝑐2 − 3𝑎2

1 − 6𝑎0𝑎2 − 𝑎2 = 0

𝑌 3
𝑝 : −2𝑎1𝜇2 − 6𝑎1𝑎2 = 0

𝑌 4
𝑝 : −6𝑎2𝜇2 − 3𝑎2

2 = 0. (4.52)

Using SageMath as our cas, and substituting the definitions

𝑞𝑝 ≡ 𝑝 + 1
2√𝑝

𝑟𝑝 ≡ 𝑝 − 1
2√𝑝

= 𝑝 − 1
𝑝 + 1

𝑞𝑝, (4.53)

we obtained the following sets of solutions

𝑦0 : 𝑎0 = 0, 1
3
(𝑐2 − 1), 𝑎1 = 0, 𝑎2 = 0, 𝜇 = 𝑚 ∈ ℝ; (4.54)
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𝑦1 : 𝑎0 = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

), 𝑎1 = 0,

𝑎2 = (1 − 𝑐2) 2𝑝
√(3𝑝2 + 1)(𝑝2 + 3)

,

𝜇 = ±
√

𝑐2 − 1
√𝑝

4√(3𝑝2 + 1)(𝑝2 + 3)
;

𝑦2 : 𝑎0 = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

), 𝑎1 = 0,

𝑎2 = (𝑐2 − 1) 2𝑝
√(3𝑝2 + 1)(𝑝2 + 3)

,

𝜇 = ±
√

1 − 𝑐2
√𝑝

4√(3𝑝2 + 1)(𝑝2 + 3)
. (4.54)

An aside: without pre-substituting 𝑞 and 𝑟, the sets of solutions originally was

𝑦0 : 𝑎0 = 0, 1
3
(𝑐2 − 1), 𝑎1 = 0, 𝑎2 = 0, 𝜇 = 𝑚 ∈ ℝ;

𝑦1 : 𝑎0 = 𝑐2 − 1
6

(1 + 2𝑞2 + 𝑟2

√𝑞4 + 𝑞2𝑟2 + 𝑟4
), 𝑎1 = 0,

𝑎2 = 1 − 𝑐2

2
1

√𝑞4 + 𝑞2𝑟2 + 𝑟4
,

𝜇 = ±
√

𝑐2 − 1
2

1
4√𝑞4 + 𝑞2𝑟2 + 𝑟4

;

𝑦2 : 𝑎0 = 𝑐2 − 1
6

(1 − 2𝑞2 + 𝑟2

√𝑞4 + 𝑞2𝑟2 + 𝑟4
), 𝑎1 = 0,

𝑎2 = 𝑐2 − 1
2

1
√𝑞4 + 𝑞2𝑟2 + 𝑟4

,

𝜇 = ±
√

1 − 𝑐2

2
1

4√𝑞4 + 𝑞2𝑟2 + 𝑟4
. (4.55)

We note that some solutions are paired due to similarities, differing only in

parity. Substituting these solutions back into the forced nonlienar pde gave us

familiar results.
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Specifically, when 𝑐2 > 1, 𝑦0 gives trivial solutions, while 𝑦1 and 𝑦2 provide

the soliton solutions

𝑢1(𝑥, 𝑡, 𝑝)gen = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(1 − 𝑐2) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tanh(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

1 + 𝑝 tanh2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

]
]]
]

2

(4.56)

𝑢2(𝑥, 𝑡, 𝑝)gen = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(𝑐2 − 1) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tanh(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))

1 + 𝑝 tanh2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))
]
]]
]

2

. (4.57)

In the opposite regime where 𝑐2 < 1, 𝑦1 and 𝑦2 yield the plane periodic solutions

𝑢3(𝑥, 𝑡, 𝑝)gen = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(𝑐2 − 1) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tan(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))

1 − 𝑝 tan2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))
]
]]
]

2

(4.58)

𝑢4(𝑥, 𝑡, 𝑝)gen = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(1 − 𝑐2) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tan(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

1 − 𝑝 tan2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

]
]]
]

2

(4.59)
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As a crucial verification, setting 𝑝 = 1 in these generalized solutions produces

the unforced particular solutions obtained via the standard tanh method as in

𝑢1(𝑥, 𝑡, 𝑝 = 1)gen = 𝑐2 − 1
2

+ 2(1 − 𝑐2)
[
[
[ tanh(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

1 + tanh2(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡))]

]
]

2

= 𝑐2 − 1
2

[1 − tanh2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

sech2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))

= 𝑢1(𝑥, 𝑡)ext std = 𝑢1(𝑥, 𝑡)std
(4.60)

𝑢2(𝑥, 𝑡, 𝑝 = 1)gen = −𝑐2 − 1
6

+ 2(𝑐2 − 1)
[
[
[ tanh(

√
1−𝑐2

4 (𝑥 − 𝑐𝑡))

1 + tanh2(
√

1−𝑐2

4 (𝑥 − 𝑐𝑡))]
]
]

2

= −𝑐2 − 1
6

[1 − 3 tanh2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑢2(𝑥, 𝑡)ext std = 𝑢2(𝑥, 𝑡)std
(4.61)

𝑢3(𝑥, 𝑡, 𝑝 = 1)gen = 𝑐2 − 1
2

+ 2(𝑐2 − 1)
[
[
[ tan(

√
1−𝑐2

4 (𝑥 − 𝑐𝑡))

1 − tan2(
√

1−𝑐2

4 (𝑥 − 𝑐𝑡))]
]
]

2

= 𝑐2 − 1
2

[1 + tan2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

sec2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))

= 𝑢7(𝑥, 𝑡)ext std = 𝑢3(𝑥, 𝑡)std
(4.62)

𝑢4(𝑥, 𝑡, 𝑝 = 1)gen = −𝑐2 − 1
6

+ 2(1 − 𝑐2)
[
[
[ tan(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

1 − tan2(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡))]

]
]

2

= −𝑐2 − 1
6

[1 + 3 tan2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= 𝑢8(𝑥, 𝑡)ext std = 𝑢4(𝑥, 𝑡)std
(4.63)
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In summary, the generalized tanh method, for 𝑝 ≠ 1, yields solutions to the

forced Boussinesq equation due to the emergence of terms involving non-integer

powers of 𝑌𝑝, represented by the forcing function 𝐹(𝑌𝑝). Setting 𝑝 = 1 eliminates

𝐹(𝑌𝑝), resulting in solutions to the original, unforced Boussinesq equation.

This approach introduces a valuable parameter 𝑝, which provides a contin-

uous deformation of the standard solutions while revealing solutions to related

forced systems. See plots in Figure 6 and Figure 7 for the solutions.

(a): 𝑢1,gen : 𝑐 = 2, |𝑥, 𝑡| ≤ 4 (b): 𝑢2,gen : 𝑐 = 1
2 , |𝑥, 𝑡| ≤ 4

(c): 𝑢1,gen : 𝑐 = 2, |𝑥| ≤ 10 (d): 𝑢2,gen : 𝑐 = 1
2 , |𝑥| ≤ 10

Figure 6:  Plots of the soliton solutions to the classical Boussinesq equation via

generalized tanh method, with 𝑡 = 0, 2, 4.
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(a): 𝑢3,gen : 𝑐 = 2, |𝑥, 𝑡| ≤ 4 (b): 𝑢4,gen : 𝑐 = 1
2 , |𝑥, 𝑡| ≤ 4

(c): 𝑢3,gen : 𝑐 = 2, |𝑥| ≤ 10 (d): 𝑢4,gen : 𝑐 = 1
2 , |𝑥| ≤ 10

Figure 7:  Plots of the plane periodic solutions to the classical Boussinesq

equation via generalized tanh method, with 𝑡 = 0, 2, 4.

4.5. Solutions via extended generalized tanh method
This subsection integrates the strengths of both the series extension and the

generalization introduced via the ansatz 𝑌𝑝. Similar to our treatment of the

extended standard tanh method, the extended generalized tanh method largely

followed same procedures, with the exception that we now employed a more

comprehensive series expansion previously discussed inthat incorporated nega-

tive powers of 𝑌𝑝 as in

0 = (𝑐2 − 1)(𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2 + 𝑏1𝑌 −1 + 𝑏2𝑌 −2)

−3(𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2 + 𝑏1𝑌 −1 + 𝑏2𝑌 −2)2 (4.64)
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+[𝜇2((𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

)
2

· d2
𝑌𝑝

+𝜇2((𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

)

(−2𝑌𝑝,𝜉 − 𝑟𝑝𝑌𝑝,𝜉(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
−1/2

) · d𝑌𝑝
]

(𝑎0 + 𝑎1𝑌 + 𝑎2𝑌 2 + 𝑏1𝑌 −1 + 𝑏2𝑌 −2). (4.64)

This led to the following, more extensive system of equations

𝑌 −4 : −6𝑏2𝜇2𝑞4 − 6𝑏2𝜇2𝑞2𝑟2 − 3𝑏2
2 = 0

𝑌 −3 : −2𝑏1𝜇2𝑞4 − 2𝑏1𝜇2𝑞2𝑟2 − 6𝑏1𝑏2 = 0

𝑌 −2 : 8𝑏2𝜇2𝑞2 + 4𝑏2𝜇2𝑟2 + 𝑏2𝑐2 − 3𝑏2
1 − 6𝑎0𝑏2 − 𝑏2 = 0

𝑌 −1 : 2𝑏1𝜇2𝑞2 + 𝑏1𝜇2𝑟2 + 𝑏1𝑐2 − 6𝑎0𝑏1 − 6𝑎1𝑏2 − 𝑏1 = 0

𝑌 0 : −2𝑎2𝜇2𝑞4 − 2𝑎2𝜇2𝑞2𝑟2 + 𝑎0𝑐2 − 2𝑏2𝜇2 − 3𝑎2
0 − 6𝑎1𝑏1

−6𝑎2𝑏2 − 𝑎0 = 0

𝑌 1 : 2𝑎1𝜇2𝑞2 + 𝑎1𝜇2𝑟2 + 𝑎1𝑐2 − 6𝑎0𝑎1 − 6𝑎2𝑏1 − 𝑎1 = 0

𝑌 2 : 8𝑎2𝜇2𝑞2 + 4𝑎2𝜇2𝑟2 + 𝑎2𝑐2 − 3𝑎2
1 − 6𝑎0𝑎2 − 𝑎2 = 0

𝑌 3 : −2𝑎1𝜇2 − 6𝑎1𝑎2 = 0

𝑌 4 : −6𝑎2𝜇2 − 3𝑎2
2 = 0 (4.65)

with the terms involving non-integer powers of 𝑌𝑝 already separated

𝑌 −2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 : −2𝑏2𝜇2𝑞2𝑟 = 0

𝑌 −1
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 : −𝑏1𝜇2𝑞2𝑟 = 0

𝑌 0
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 : 2𝑏2𝜇2𝑟 = 0

𝑌 1
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 : 𝑎1𝜇2𝑞2𝑟 + 𝑏1𝜇2𝑟 = 0

𝑌 2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 : 2𝑎2𝜇2𝑞2𝑟 = 0

𝑌 3
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 : −𝑎1𝜇2𝑟 = 0

𝑌 4
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 : −2𝑎2𝜇2𝑟 = 0

𝑌 −4
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 : −12𝑏2𝜇2𝑞2𝑟 = 0 (4.66)
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𝑌 −3
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 : −4𝑏1𝜇2𝑞2𝑟 = 0

𝑌 −2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 : 8𝑏2𝜇2𝑟 = 0

𝑌 −1
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 : 2𝑏1𝜇2𝑟 = 0

𝑌 0
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 : −4𝑎2𝜇2𝑞2𝑟 − 𝑏1𝜇2𝑞2𝑟 = 0

𝑌 1
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 : 2𝑎1𝜇2𝑟 = 0

𝑌 2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 : 8𝑎2𝜇2𝑟 = 0 (4.66)

into the forcing function

𝐹(𝑌 ) = −2𝑏2𝜇2𝑞2𝑟𝑌 −2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 − 𝑏1𝜇2𝑞2𝑟𝑌 −1

𝑝 (𝑞2
𝑝 − 𝑌 2

𝑝 )−1/2

+2𝑏2𝜇2𝑟(𝑞2
𝑝 − 𝑌 2

𝑝 )−1/2 + (𝑎1𝜇2𝑞2𝑟 + 𝑏1𝜇2𝑟)𝑌𝑝(𝑞2
𝑝 − 𝑌 2

𝑝 )−1/2

+2𝑎2𝜇2𝑞2𝑟𝑌 2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 − 𝑎1𝜇2𝑟𝑌 3

𝑝 (𝑞2
𝑝 − 𝑌 2

𝑝 )−1/2

−2𝑎2𝜇2𝑟𝑌 4
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 − 12𝑏2𝜇2𝑞2𝑟𝑌 −4

𝑝 (𝑞2
𝑝 − 𝑌 2

𝑝 )1/2

−4𝑏1𝜇2𝑞2𝑟𝑌 −3
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 + 8𝑏2𝜇2𝑟𝑌 −2

𝑝 (𝑞2
𝑝 − 𝑌 2

𝑝 )1/2

+2𝑏1𝜇2𝑟𝑌 −1
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 + (−4𝑎2𝜇2𝑞2𝑟 − 𝑏1𝜇2𝑞2𝑟)(𝑞2

𝑝 − 𝑌 2
𝑝 )1/2

+2𝑎1𝜇2𝑟𝑌𝑝(𝑞2
𝑝 − 𝑌 2

𝑝 )1/2 + 8𝑎2𝜇2𝑟𝑌 2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2

= [−2𝑏2𝜇2𝑞2𝑟𝑌 −2
𝑝 − 𝑏1𝜇2𝑞2𝑟𝑌 −1

𝑝 + 2𝑏2𝜇2𝑟 + (𝑎1𝜇2𝑞2𝑟 + 𝑏1𝜇2𝑟)𝑌𝑝

+2𝑎2𝜇2𝑞2𝑟𝑌 2
𝑝 − 𝑎1𝜇2𝑟𝑌 3

𝑝 − 2𝑎2𝜇2𝑟𝑌 4
𝑝 ](𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2

+[−12𝑏2𝜇2𝑞2𝑟𝑌 −4
𝑝 − 4𝑏1𝜇2𝑞2𝑟𝑌 −3

𝑝 + 8𝑏2𝜇2𝑟𝑌 −2
𝑝 + 2𝑏1𝜇2𝑟𝑌 −1

𝑝

+(−4𝑎2𝜇2𝑞2𝑟 − 𝑏1𝜇2𝑞2𝑟) + 2𝑎1𝜇2𝑟𝑌𝑝 + 8𝑎2𝜇2𝑟𝑌 2
𝑝 ]

(𝑞2
𝑝 − 𝑌 2

𝑝 )1/2. (4.67)

By equating our nonlinear ode, and therefore our nonlinear pde, to 𝐹(𝑌𝑝), the

equation becomes forced. In particular, by setting 𝑝 = 1, we may recover the

unforced system. Then the reduced system of equations has solutions

𝑦0 : 𝑎0 = 0, 1
3
(𝑐2 − 1), 𝑎1 = 0, 𝑎2 = 0, 𝑏1 = 0, 𝑏2 = 0,

𝜇 = 𝑚 ∈ ℝ; (4.68)
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𝑦1 : 𝑎0 = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

), 𝑎1 = 0,

𝑎2 = (1 − 𝑐2) 2𝑝
√(3𝑝2 + 1)(𝑝2 + 3)

, 𝑏1 = 0, 𝑏2 = 0,

𝜇 = ±
√

𝑐2 − 1
√𝑝

4√(3𝑝2 + 1)(𝑝2 + 3)
;

𝑦2 : 𝑎0 = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

), 𝑎1 = 0,

𝑎2 = (𝑐2 − 1) 2𝑝
√(3𝑝2 + 1)(𝑝2 + 3)

, 𝑏1 = 0, 𝑏2 = 0,

𝜇 = ±
√

1 − 𝑐2
√𝑝

4√(3𝑝2 + 1)(𝑝2 + 3)
;

𝑦3 : 𝑎0 = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

), 𝑎1 = 0,

𝑎2 = 0, 𝑏1 = 0, 𝑏2 = (1 − 𝑐2)
(𝑝2 + 1)(𝑝 + 1)2

4𝑝√(3𝑝2 + 1)(𝑝2 + 3)
,

𝜇 = ±
√

𝑐2 − 1
√𝑝

4√(3𝑝2 + 1)(𝑝2 + 3)
;

𝑦4 : 𝑎0 = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

), 𝑎1 = 0,

𝑎2 = 0, 𝑏1 = 0, 𝑏2 = (𝑐2 − 1)
(𝑝2 + 1)(𝑝 + 1)2

4𝑝√(3𝑝2 + 1)(𝑝2 + 3)
,

𝜇 = ±
√

1 − 𝑐2
√𝑝

4√(3𝑝2 + 1)(𝑝2 + 3)
; (4.68)

Substituting these solutions back into the pde, we obtained familiar results.

In particular, when 𝑐2 > 1, 𝑦0 provides trivial solutions, while 𝑦1 and 𝑦2

give the soliton solutions

𝑢1(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(1 − 𝑐2) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)
(4.69)
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[
[[
[ tanh(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

1 + 𝑝 tanh2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

]
]]
]

2

(4.69)

𝑢2(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(𝑐2 − 1) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tanh(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))

1 + 𝑝 tanh2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))
]
]]
]

2

(4.70)

whereas 𝑦3 and 𝑦4 give the non-soliton traveling wave solutions

𝑢3(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(1 − 𝑐2) 𝑝2 + 1
4𝑝√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[1 + 𝑝 tanh2(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

tanh(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

]
]]
]

2

(4.71)

𝑢4(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(𝑐2 − 1) 𝑝2 + 1
4𝑝√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[1 + 𝑝 tanh2(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))

tanh(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))
]
]]
]

2

(4.72)

In the opposite regime where 𝑐2 < 1, 𝑦1, 𝑦2, 𝑦3 and 𝑦4 give the plane periodic

solutions

𝑢5(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(𝑐2 − 1) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)
(4.73)
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[
[[
[ tan(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))

1 − 𝑝 tan2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))
]
]]
]

2

(4.73)

𝑢6(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(1 − 𝑐2) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tan(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

1 − 𝑝 tan2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

]
]]
]

2

(4.74)

𝑢7(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(𝑐2 − 1) 𝑝2 + 1
4𝑝√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[1 − 𝑝 tan2(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))

tan(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))
]
]]
]

2

(4.75)

𝑢8(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(1 − 𝑐2) 𝑝2 + 1
4𝑝√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[1 − 𝑝 tan2(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

tan(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

]
]]
]

2

(4.76)

As with the generalized tanh method, a crucial verification is performed by

setting 𝑝 = 1. This should reduce the forced generalized extended solutions to

the unforced extended standard solutions

𝑢1(𝑥, 𝑡, 𝑝 = 1)ext gen = 𝑐2 − 1
2

+ 2(1 − 𝑐2)
[
[
[ tanh(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

1 + tanh2(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡))]

]
]

2

(4.77)
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= 𝑐2 − 1
2

[1 − tanh2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

sech2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))

= 𝑢1(𝑥, 𝑡)gen = 𝑢1(𝑥, 𝑡)ext std = 𝑢1(𝑥, 𝑡)std
(4.77)

𝑢2(𝑥, 𝑡, 𝑝 = 1)ext gen = −𝑐2 − 1
6

+ 2(𝑐2 − 1)
[
[
[ tanh(

√
1−𝑐2

4 (𝑥 − 𝑐𝑡))

1 + tanh2(
√

1−𝑐2

4 (𝑥 − 𝑐𝑡))]
]
]

2

= −𝑐2 − 1
6

[1 − 3 tanh2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑢2(𝑥, 𝑡)gen = 𝑢2(𝑥, 𝑡)ext std = 𝑢2(𝑥, 𝑡)std
(4.78)

𝑢3(𝑥, 𝑡, 𝑝 = 1)ext gen = 𝑐2 − 1
2

+ 1 − 𝑐2

8
[
[
[1 + tanh2(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

tanh(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡)) ]

]
]

2

= 𝑐2 − 1
2

[1 − coth2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= −𝑐2 − 1
2

csch2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))

= 𝑢3(𝑥, 𝑡)ext std
(4.79)

𝑢4(𝑥, 𝑡, 𝑝 = 1)ext gen = −𝑐2 − 1
6

+ 𝑐2 − 1
8

[
[
[1 + tanh2(

√
1−𝑐2

4 (𝑥 − 𝑐𝑡))

tanh(
√

1−𝑐2

4 (𝑥 − 𝑐𝑡)) ]
]
]

2

= −𝑐2 − 1
6

[1 − 3 coth2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑢4(𝑥, 𝑡)ext std
(4.80)

𝑢5(𝑥, 𝑡, 𝑝 = 1)ext gen = 𝑐2 − 1
2

+ 2(𝑐2 − 1)
[
[
[ tan(

√
1−𝑐2

4 (𝑥 − 𝑐𝑡))

1 − tan2(
√

1−𝑐2

4 (𝑥 − 𝑐𝑡))]
]
]

2

= 𝑐2 − 1
2

[1 + tan2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))] (4.81)
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= 𝑐2 − 1
2

sec2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))

= 𝑢3(𝑥, 𝑡)gen = 𝑢7(𝑥, 𝑡)ext std = 𝑢3(𝑥, 𝑡)std
(4.81)

𝑢6(𝑥, 𝑡, 𝑝 = 1)ext gen = −𝑐2 − 1
6

+ 2(1 − 𝑐2)
[
[
[ tan(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

1 − tan2(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡))]

]
]

2

= −𝑐2 − 1
6

[1 + 3 tan2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= 𝑢4(𝑥, 𝑡)gen = 𝑢8(𝑥, 𝑡)ext std = 𝑢4(𝑥, 𝑡)std
(4.82)

𝑢7(𝑥, 𝑡, 𝑝 = 1)ext gen = 𝑐2 − 1
2

+ 𝑐2 − 1
8

[
[
[1 − tan2(

√
1−𝑐2

4 (𝑥 − 𝑐𝑡))

tan(
√

1−𝑐2

4 (𝑥 − 𝑐𝑡)) ]
]
]

2

= 𝑐2 − 1
2

[1 + cot2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

csc2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))

= 𝑢9(𝑥, 𝑡)ext std
(4.83)

𝑢8(𝑥, 𝑡, 𝑝 = 1)ext gen = −𝑐2 − 1
6

+ 1 − 𝑐2

8
[
[
[1 − tan2(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

tan(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡)) ]

]
]

2

= −𝑐2 − 1
6

[1 + 3 cot2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= 𝑢10(𝑥, 𝑡)ext std. (4.84)

Consistent with the generalized tanh method, setting 𝑝 = 1 correctly reduces

these solutions to those obtained from the extended standard tanh method. This

highlights that the extended generalized method truly encompasses previous

methods while providing additional tunable solution families. The 8 unique

families of solutions (for 𝑝 = 1, with potential for different families for other

values of 𝑝) represent a significant expansion of known exact solutions for the
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forced Boussinesq equation. The ability to tune these solutions via 𝑝 is a key

contribution. See plots in Figure 8 and Figure 9 for the solutions.

In conclusion, by extending the generalized tanh method, 14 sets of solutions

that satisfy the system of equations were identified. Two of these solutions

are trivial. Additionally, two solutions, initially appearing as two-term sums of

hyperbolic functions, correspond to existing solutions and are not unique. Thus,

8 families of solutions were obtained: two solitons, two non-soliton traveling

waves, and four plane periodic solutions. For 𝑝 ≠ 1, we are solving a forced

version of the equation.

(a): 𝑢3,ext gen : 𝑐 = 2, |𝑥, 𝑡| ≤ 4 (b): 𝑢4,ext gen : 𝑐 = 1
2 , |𝑥, 𝑡| ≤ 4

(c): 𝑢3,ext gen : 𝑐 = 2, |𝑥| ≤ 10 (d): 𝑢4,ext gen : 𝑐 = 1
2 , |𝑥| ≤ 10

Figure 8:  Plots of the additional non-soliton traveling wave solutions to the

classical Boussinesq equation via extended generalized tanh method, with 𝑡 =

0, 2, 4. The other solutions are found in Figure 6 and Figure 7.
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(a): 𝑢7,ext gen : 𝑐 = 2, |𝑥, 𝑡| ≤ 4 (b): 𝑢8,ext gen : 𝑐 = 1
2 , |𝑥, 𝑡| ≤ 4

(c): 𝑢7,ext gen : 𝑐 = 2, |𝑥| ≤ 10 (d): 𝑢8,ext gen : 𝑐 = 1
2 , |𝑥| ≤ 10

Figure 9:  Plots of the additional plane periodic solutions to the classical

Boussinesq equation via extended generalized tanh method, with 𝑡 = 0, 2, 4. The

other solutions are found in Figure 6 and Figure 7.

By setting 𝑝 = 1, we validated that the entire set of solutions from the standard

and extended standard tanh methods are contained within our generalized

framework. This confirms the validity of the ansatz-inspired introductory func-

tion 𝑌𝑝.

4.6. Playing with the paramater 𝑝
This section explores the specific effects of varying the parameter 𝑝 on the

derived solution families. We use 𝑢1,ext gen, 𝑢3,ext gen, and 𝑢6,ext gen, with 𝑐 = 2, as

representative examples of soliton, non-soliton traveling wave, and plane periodic
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solutions, respectively. This highlights the control we have over the solutions by

using 𝑝 as our tunable parameter.

For 0 ≤ 𝑝 ≤ 1, we observe broadening and amplitude reduction. We saw

distinct trends as 𝑝 → 0 from 𝑝 = 1. The soliton 𝑢1 widens and its amplitude

decreases, indicating energy delocalization. The wave flattens suggesting a

transition towards a plane-wave-like state or dissipation of its solitary wave

characteristics. The effect of forcing seems dominant when 𝑝 → 0.

The non-soliton traveling wave 𝑢3 also widens, and its depth decreases.

The localized feature becomes less pronounced, potentially tending towards a

constant solution or losing its distinct waveform. This could imply instability or

energy dispersion under conditions represented by smaller 𝑝.

(a): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 1.0 (b): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 0.6 (c): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 0.2

(d): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 4
Figure 10:  Spacetime evolutions (top) and time evolutions (bottom) of the

soliton solution 𝑢1,ext gen for 𝑐 = 2 and 0 ≤ 𝑝 ≤ 1.
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(a): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 1.0(b): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 0.6(c): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 0.2

(d): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 4
Figure 11:  Spacetime evolutions (top) and time evolutions (bottom) of the non-

soliton traveling wave solution 𝑢3,ext gen for 𝑐 = 2 and 0 ≤ 𝑝 ≤ 1.

(a): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 =

1.0

(b): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 =

0.6

(c): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 =

0.2

(d): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 4
Figure 12:  Spacetime evolutions (top) and time evolutions (bottom) of the plane

periodic solution 𝑢6,ext gen for 𝑐 = 2 and 0 ≤ 𝑝 ≤ 1.
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Whereas, the plane periodic wave 𝑢6 experiences changes in its internal structure

within each period. The amplitude and wavelength are modulated, revealing

a richer variety of periodic patterns compared to the fixed 𝑝 = 1 case. The

relaxation at the origin and compression in surrounding regions illustrate this

structural tuning. This dynamic can be likened to a spring mechanism embedded

within the solution along the longitudinal axis.

(a): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 1.0 (b): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 1.2 (c): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 1.6

(d): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 4
Figure 13:  Spacetime evolutions (top) and time evolutions (bottom) of the

soliton solution 𝑢1,ext gen for 𝑐 = 2 and 𝑝 > 1.

For 𝑝 > 1, we observe intensification and concentration, an opposite trend. As 𝑝

increases beyond 1, the soliton 𝑢1 becomes narrower and its amplitude increases,

signifying energy concentration and a more sharply peaked wave. The valley in

the non-soliton traveling wave 𝑢3 deepens and narrows, making the feature more

pronounced and localized. Also, the amplitude of oscillations increases in the

plane periodic wave 𝑢6, and the wavelength might be affected, leading to more

pronounced periodic variations.
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(a): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 1.0(b): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 1.2(c): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 1.6

(d): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 4
Figure 14:  Spacetime evolutions (top) and time evolutions (bottom) of the non-

soliton traveling wave solution 𝑢3,ext gen for 𝑐 = 2 and 𝑝 > 1.

(a): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 =

1.0

(b): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 =

1.2

(c): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 =

1.6

(d): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 4
Figure 15:  Spacetime evolutions (top) and time evolutions (bottom) of the plane

periodic solution 𝑢6,ext gen for 𝑐 = 2 and 𝑝 > 1.
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In this regime, localized waves become more intense and compact. This might

correspond to scenarios with stronger nonlinearity or different dispersive prop-

erties, effectively controlled by 𝑝 via the forcing term.

For 𝑝 < 1, we observe oscillatory regimes and potential singularities. The

regime is fundamentally different because µ ∝ √𝑝 becomes imaginary for 𝑐2 > 1.

This transforms hyperbolic functions in 𝑌𝑝 into trigonometric functions, leading

to drastically different solution characteristics. The soliton loses its single-hump

shape, becoming oscillatory. It no longer fits the classical soliton definition. The

non-soliton traveling wave also transforms into an oscillatory pattern. The 𝑌 −2
𝑝

term might lead to singularities if 𝑌𝑝 = 0, which is possible with trigonometric

forms. The plots suggest complex, potentially singular behavior. The plane

periodic solution remains periodic but with a significantly altered waveform,

often more complex with sharper features or additional oscillations within each

period.

(a): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 0.1 (b): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 =

−0.2

(c): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 =

−0.6

(d): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 4
Figure 16:  Spacetime evolutions (top) and time evolutions (bottom) of the

soliton solution 𝑢1,ext gen for 𝑐 = 2 and 𝑝 < 1.
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This regime reveals a rich landscape of oscillatory solutions, as a consequence

of the transformation from hyperbolic to trigonometric character (a direct

mathematical consequence of 𝑝 being negative). These solutions are qualitatively

different from the 𝑝 ≥ 0 cases and might describe entirely different physical

phenomena or mathematical structures. The potential for singularities in some

of these solutions warrants careful mathematical scrutiny.

(a): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 0.1 (b): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 =

−0.2

(c): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 =

−0.6

(d): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 4
Figure 17:  Spacetime evolutions (top) and time evolutions (bottom) of the non-

soliton traveling wave solution 𝑢3,ext gen for 𝑐 = 2 and 𝑝 < 1.
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(a): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 =

0.1

(b): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 =

−0.2

(c): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 =

−0.6

(d): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 4
Figure 18:  Spacetime evolutions (top) and time evolutions (bottom) of the plane

periodic solution 𝑢6,ext gen for 𝑐 = 2 and 𝑝 < 1.
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5. Conclusions and Recommendations
In this thesis, we have introduced a novel generalization and further extension of

the tanh-function method and successfully applied it to the classical Boussinesq

equation. This endeavor has yielded a rich spectrum of new, exact, and tunable

solutions. The core contributions and findings are

1. Methodological advancement. We developed a generalized tanh-function

method, characterized by an ansatz 𝑌𝑝 involving a tunable parameter 𝑝. This

was further enhanced by an extension incorporating negative powers in the

series solution, leading to the extended generalized tanh-function method.

The necessary derivative operators for 𝑌𝑝 were rigorously computed forming

the mathematical backbone of this generalization.

2. Derivation of new solutions. Application of these methods to the Boussinesq

equation resulted in 8 unique families of exact solutions. These encompass

tunable solitons, tunable non-soliton traveling waves, and tunable plane

periodic solutions. The solutions are tunable in the sense that their qualitative

and quantitative features such as amplitude, width, wavelength, and even

fundamental form can be continuously varied by adjusting the parameter 𝑝.

3. Forcing function and scope. A critical insight is that for 𝑝 ≠ 1, the derived

solutions satisfy a forced Boussinesq equation, where the forcing term 𝐹(𝑌𝑝) is

explicitly dependent on 𝑝 and the solution form 𝑌𝑝. Only when 𝑝 = 1 does this

forcing term vanish, and our methods correctly retrieve the known solutions

of the standard (unforced) Boussinesq equation obtainable via the standard

and extended standard tanh methods. This demonstrates the consistency and

broader scope of our generalized approach.

4. Impact of parameter 𝑝. The parameter 𝑝 was shown to be a powerful control

mechanism.

• For 0 ≤ 𝑝 ≤ 1, decreasing 𝑝 typically leads to wider, flatter localized waves

and structurally modulated periodic waves.
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• For 𝑝 > 1, localized solutions tend to become narrower and more sharply

peaked.

• For 𝑝 < 0, the solutions undergo a fundamental transformation from

hyperbolic to trigonometric character due to the wave number 𝜇 becoming

imaginary. This results in diverse oscillatory patterns, a departure from

classical soliton forms, and the potential emergence of singularities.

5. Expansion of solution space. The developed methods significantly expand the

known analytical solution space for Boussinesq-type equations. The tunability

offered by 𝑝 provides a framework for generating solution families rather

than isolated solutions which can be invaluable for theoretical modeling and

understanding the diverse dynamics admitted by such nonlinear systems.

In essence, this work provides a systematic and powerful extension to established

analytical techniques for nonlinear partial differential equations offering new

avenues for exploring their complex solution landscapes.

The findings of this research open several avenues for future investigation

and development.

1. Broader application. Apply the extended generalized tanh-function method to

a wider range of nonlinear partial differential equations relevant in physics and

engineering, including other types of Boussinesq equations, KdV-type equa-

tions, nonlinear Schrödinger equations, and systems in higher dimensions.

2. Exploration of parameter space. Conduct a more exhaustive investigation of

the parameter 𝑝, including complex values, to explore an even broader class

of solutions and their mathematical properties. The physical realizability and

stability of solutions for 𝑝 < 0 or complex 𝑝 warrant detailed study.

3. Analysis of forcing function. Investigate the nature of the forcing function

𝐹(𝑌𝑝) that arises when 𝑝 ≠ 1. Future work could focus on

• finding conditions other than 𝑝 = 1 under which 𝐹(𝑌𝑝) might vanish,

potentially yielding new exact solutions to the unforced equations, and
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• exploring physical systems where such forcing terms might naturally arise

or can be meaningfully interpreted.

4. Generalization using Riccati equation. Work towards formulating a more

encompassing method possibly based on the Riccati equation that could unify

various tanh-based methods, including the generalization presented here as

special cases. This could lead to a more systematic way of generating diverse

classes of exact solutions.

5. Approximate solutions. Explore the potential of this generalized framework

for constructing approximate solutions in cases where exact solutions are

intractable. The tunable parameter might offer flexibility in optimizing

approximations.

Further research in these directions will not only enhance our understanding of

nonlinear wave phenomena but also expand the toolkit available for solving and

analyzing complex nonlinear systems.
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Appendices

5.1. End-to-end code implementation of the standard tanh method

to the classical Boussinesq equation
mu, x, c, t, p, Y, Z = s.var("mu x c t p Y Z")

a0, a1, a2 = s.var("a0 a1 a2")

def make_series(m):

    a = [s.var(f"a{i}") for i in range(m + 1)]

    return s.sum(a[i] * Y**i for i in range(m + 1))

def dz(U):

    return mu * (1 - Y**2) * s.diff(U, Y)

def dzz(U):

    return -2 * mu**2 * Y * (1 - Y**2) * s.diff(U, Y) + mu**2 * (

        1 - Y**2

    ) ** 2 * s.diff(s.diff(U, Y), Y)

def flatten(expressions):

    return [expr for expr, _ in expressions]

def prints(*items):

    for item in items:

        print(item)

    print()

U = make_series(2)

ZZ = x - c * t

YY = s.tanh(mu * Z)

UU = U.subs(Y == YY).subs(Z == ZZ)

Beq = (c**2 - 1) * U - 3 * U**2 - dz(dz(U))

seq = Beq.expand().coefficients(Y)

sols = s.solve(flatten(seq), mu, a0, a1, a2)
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# wazwaz i u1

n = 2

n = 3

prints(

    sols[n], UU.subs(sols[n]),

    UU.subs(sols[n]).full_simplify().trig_reduce(),

)

# wazwaz ii u2

n = 4

n = 5

prints(

    sols[n], UU.subs(sols[n]),

    UU.subs(sols[n]).factor(),

)

# wazwaz i u5

n = 2

n = 3

II = s.sqrt(c**2 - 1) == s.I * s.sqrt(1 - c**2)

prints(

    sols[n], UU.subs(sols[n]).subs(II),

    UU.subs(sols[n]).subs(II).full_simplify().trig_reduce(),

)

# wazwaz ii u8

n = 4

n = 5

II = s.sqrt(1 - c**2) == s.I * s.sqrt(c**2 - 1)

prints(

    sols[n], UU.subs(sols[n]).subs(II),

    UU.subs(sols[n]).subs(II).factor(),

)
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5.2. Exploratory code implementation of the extended generalized

tanh method to the classical Boussinesq equation
_u = make_series_ext(2)

_xi = x - c * t

_y = (p + 1) * s.tanh(mu * xi / 2) / (1 + p * s.tanh(mu * xi / 2) ** 2)

u = _u.subs(y == _y).subs(xi == _xi)

Beq = (c**2 - 1) * _u - 3 * _u**2 - dxi_gen(dxi_gen(_u))

seq = Beq.expand().coefficients(y)

sols = s.solve(flatten(seq), mu, a0, a1, a2, b1, b2)

prints(_u, u)

prints(Beq, seq, sols)

seq_qr = seq.copy()

qq = q == (p + 1) / (2 * s.sqrt(p))

rr = r == (p - 1) / (2 * s.sqrt(p))

for i, se in enumerate(seq_qr):

    seq_qr[i][0] = se[0].subs(qq).subs(rr)

sols_qr = s.solve(flatten(seq_qr), mu, a0, a1, a2, b1, b2)

prints(seq_qr, sols_qr)
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5.3. Exploratory code for investigating parameter 𝑝 in the solution

representatives of the classical Boussinesq equation, derived

using the extended generalized tanh method
n=7

n=9

xx=4

cc=2

Ug =

UU.subs(sols[n]).subs(c=cc).subs(QQ).subs(RR).simplify().subs(p==1)

P = plot3d(Ug, (-xx,xx), (-xx,xx), color='white', aspect_ratio=1,

plot_points=200)

P = P + axes(xx, color='black')

P.save('../src/fig/B-u1-p=+1.0.png', figsize=[10,10])

P.show()

Ug =

UU.subs(sols[n]).subs(c=cc).subs(QQ).subs(RR).simplify().subs(p==0.6)

P = plot3d(Ug, (-xx,xx), (-xx,xx), color='white', aspect_ratio=1,

plot_points=200)

P = P + axes(xx, color='black')

P.save('../src/fig/B-u1-p=+0.6.png', figsize=[10,10])

P.show()

Ug =

UU.subs(sols[n]).subs(c=cc).subs(QQ).subs(RR).simplify().subs(p==0.2)

P = plot3d(Ug, (-xx,xx), (-xx,xx), color='white', aspect_ratio=1,

    plot_points=200)

P = P + axes(xx, color='black')

P.save('../src/fig/B-u1-p=+0.2.png', figsize=[10,10])

P.show()

xx=10

tt=[1,.6,.2]

ll=['$p=1$', '$p=0.6$', '$p=0.2$']

65



yy=2

yy0=0

Ug =

UU.subs(sols[n]).subs(c=cc).subs(QQ).subs(RR).simplify().subs(t==0)

Q = plot([Ug.subs(p=t) for t in tt], (-xx,xx),

    color='black', linestyle=['-','--',':','-.'],

    axes_labels=['$x$','$u(x,t=0)$'], legend_label=ll,

    ticks_integer=True, frame=True,

    typeset='latex', ymin=yy0, ymax=yy)

Q.set_legend_options(shadow=False)

Q.save('../src/fig/B-u1-p0@t=0.png', figsize=[3,3], dpi=300)

Q.show()

Ug =

UU.subs(sols[n]).subs(c=cc).subs(QQ).subs(RR).simplify().subs(t==2)

Q = plot([Ug.subs(p=t) for t in tt], (-xx,xx),

    color='black', linestyle=['-','--',':','-.'],

    axes_labels=['$x$','$u(x,t=2)$'], legend_label=ll,

    ticks_integer=True, frame=True,

    typeset='latex', ymin=yy0, ymax=yy)

Q.set_legend_options(shadow=False)

Q.save('../src/fig/B-u1-p0@t=2.png', figsize=[3,3], dpi=300)

Q.show()

Ug =

UU.subs(sols[n]).subs(c=cc).subs(QQ).subs(RR).simplify().subs(t==4)

Q = plot([Ug.subs(p=t) for t in tt], (-xx,xx),

    color='black', linestyle=['-','--',':','-.'],

    axes_labels=['$x$','$u(x,t=4)$'], legend_label=ll,

    ticks_integer=True, frame=True,

    typeset='latex', ymin=yy0, ymax=yy)

Q.set_legend_options(shadow=False)

Q.save('../src/fig/B-u1-p0@t=4.png', figsize=[3,3], dpi=300)

Q.show()
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5.4. Computation of derivatives d𝜉, d2
𝜉 by Domingo, Dingel and

Bennett (2024)
The first-order differential operator d𝜉 is obtained as follows. Let

tanh 𝜉
2

= 1
√𝑝

tanh Ω
2

(5.1)

such that the g-HATH ansatz becomes

𝑌𝑝(𝜉) = (1 + 𝑝)
tanh 𝜉

2

1 + 𝑝 tanh2 𝜉
2

= 1 + 𝑝
√𝑝

tanh Ω
2

1 + tanh2 Ω
2

= 1 + 𝑝
2√𝑝

2 tanh Ω
2

1 + tanh2 Ω
2

= 1 + 𝑝
2√𝑝

tanh Ω

= 𝑌𝑝(Ω). (5.2)

Then

d
d𝜉

=
d𝑌𝑝

d𝜉
d

d𝑌𝑝
= (dΩ

d𝜉
d𝑌𝑝

dΩ
) d

d𝑌𝑝

= [ d
d𝜉

(2 tanh−1(√𝑝 tanh 𝜉
2
)) d

dΩ
(1 + 𝑝

2√𝑝
tanh Ω)] d

d𝑌𝑝

=
[
[
[

(
((
( 2√𝑝

1 − (√𝑝 tanh 𝜉
2)

2
d
d𝜉

(tanh 𝜉
2
)

)
))
)(1 + 𝑝

2√𝑝
(1 − tanh2 Ω))

]
]
] d

d𝑌𝑝

=
[
[[

1 + 𝑝
2

(1 − tanh2 Ω)(1 − tanh2 𝜉
2)

1 − 𝑝 tanh2 𝜉
2 ]

]]
d

d𝑌𝑝
. (5.3)

Recall the identities

tanh Ω =
2 tanh Ω

2
1 + tanh2 Ω

2
⟹ tanh2 Ω =

4 tanh2 Ω
2

(1 + tanh2 Ω
2 )2 ,

tanh 𝜉
2

= 1
√𝑝

tanh Ω
2

. (5.4)
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Our expression can then be expressed entirely in terms of Ω
2

d
d𝜉

=

[
[
[
[
[1 + 𝑝

2

(1 − 4 tanh2 Ω
2

(1+ tanh2 Ω
2 )

2 )(1 − 1
𝑝 tanh2 Ω

2 )

1 − tanh2 Ω
2

]
]
]
]
] d

d𝑌𝑝

=
[
[[

1 + 𝑝
2

−
(
((1 + 𝑝

𝑝
2 tanh2 Ω

2

(1 + tanh2 Ω
2 )2

𝑝 − tanh2 Ω
2

1 − tanh2 Ω
2 )

))
]
]]

d
d𝑌𝑝

=
[
[[

2
1 + 𝑝(

(((1 + 𝑝)2

4𝑝
− (1 + 𝑝)2

𝑝
tanh2 Ω

2

(1 + tanh2 Ω
2 )2

)
))(

𝑝 − tanh2 Ω
2

1 − tanh2 Ω
2

)
]
]]

d
d𝑌𝑝

=

[
[
[
[
[1 + 𝑝

2

(1 − 4 tanh2 Ω
2

(1+ tanh2 Ω
2 )

2 )(1 − 1
𝑝 tanh2 Ω

2 )

1 − tanh2 Ω
2

]
]
]
]
] d

d𝑌𝑝

=
[
[[

1 + 𝑝
2𝑝

− 1 + 𝑝
𝑝

2 tanh2 Ω
2

(1 + tanh2 Ω
2 )2 (

𝑝 − tanh2 Ω
2

1 − tanh2 Ω
2

)
]
]]

d
d𝑌𝑝

=
[
[[

2
1 + 𝑝(

(((1 + 𝑝)2

4𝑝
− (1 + 𝑝)2

𝑝
tanh2 Ω

2

(1 + tanh2 Ω
2 )2

)
))(

𝑝 − tanh2 Ω
2

1 − tanh2 Ω
2

)
]
]]

d
d𝑌𝑝

= [ 2
1 + 𝑝

((1 + 𝑝)2

4𝑝
− (1 + 𝑝)2

4𝑝
tanh2 Ω)(

𝑝 − tanh2 Ω
2

1 − tanh2 Ω
2

)] d
d𝑌𝑝

. (5.5)

Recall that

𝑞𝑝 = 1 + 𝑝
2√𝑝

⟹ 𝑞2
𝑝 = (1 + 𝑝)2

4𝑝

𝑌𝑝(Ω) = 1 + 𝑝
2√𝑝

tanh Ω ⟹ 𝑌 2
𝑝 = (1 + 𝑝)2

4𝑝
tanh2 Ω. (5.6)

Substituting, our expression becomes

d
d𝜉

= [ 2
1 + 𝑝

(𝑞2
𝑝 − 𝑌 2

𝑝 )
𝑝 − tanh2 Ω

2
1 − tanh2 Ω

2
] d

d𝑌𝑝

= [(𝑞2
𝑝 − 𝑌 2

𝑝 )(1 − 1 +
2𝑝 − 2 tanh2 Ω

2
(1 + 𝑝)(1 − tanh2 Ω

2 )
)] d

d𝑌𝑝

= [(𝑞2
𝑝 − 𝑌 2

𝑝 )(1 +
−(1 + 𝑝)(1 − tanh2 Ω

2 ) + 2𝑝 − 2 tanh2 Ω
2

(1 + 𝑝)(1 − tanh2 Ω
2 )

)] d
d𝑌𝑝

(5.7)
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= [(𝑞2
𝑝 − 𝑌 2

𝑝 )(1 +
(𝑝 − 1)(1 + tanh2 Ω

2 )
(1 + 𝑝)(1 − tanh2 Ω

2 )
)] d

d𝑌𝑝

=
[
[
[(𝑞2

𝑝 − 𝑌 2
𝑝 )

(
((
(1 + 𝑝 − 1

1 + 𝑝√

√√
√(1 + tanh2 Ω

2 )2

(1 − tanh2 Ω
2 )2

)
))
)

]
]
] d

d𝑌𝑝

=

[
[
[
[
[

(𝑞2
𝑝 − 𝑌 2

𝑝 )

(
((
((
((

1 + 𝑝 − 1
1 + 𝑝

√

√√
√√ 1

(1− tanh2 Ω
2 )

2

(1+ tanh2 Ω
2 )

2
)
))
))
))

]
]
]
]
]

d
d𝑌𝑝

=

[
[
[
[

(𝑞2
𝑝 − 𝑌 2

𝑝 )

(
((
((
(

1 + 𝑝 − 1
1 + 𝑝

√

√√
√ 1

1 − 4 tanh2 Ω
2

(1+ tanh2 Ω
2 )

2
)
))
))
)

]
]
]
] d

d𝑌𝑝

=

[
[
[
[
[

(𝑞2
𝑝 − 𝑌 2

𝑝 )

(
((
((
((

1 + 𝑝 − 1
1 + 𝑝

1

√ 4𝑝
(𝑝+1)2 ( (𝑝+1)2

4𝑝 − (𝑝+1)2

4𝑝 tanh2 Ω)
)
))
))
))

]
]
]
]
] d

d𝑌𝑝

=
[
[[(𝑞2

𝑝 − 𝑌 2
𝑝 )

(
((1 + 𝑝 − 1

1 + 𝑝
𝑝 + 1
2√𝑝

1
√𝑞2

𝑝 − 𝑌 2
𝑝 )

))
]
]]

d
d𝑌𝑝

=
[
[[(𝑞2

𝑝 − 𝑌 2
𝑝 )

(
((1 +

𝑟𝑝

√𝑞2
𝑝 − 𝑌 2

𝑝 )
))

]
]]

d
d𝑌𝑝

= [(𝑞2
𝑝 − 𝑌 2

𝑝 ) + 𝑟𝑝√𝑞2
𝑝 − 𝑌 2

𝑝 ] d
d𝑌𝑝

(5.7)

where 𝑟𝑝 = 𝑝−1
2√𝑝 .

The second-order differential operator d2
𝜉 is obtained as follows

d2

d𝜉2 = d
d𝜉

( d
d𝜉

)

= [(𝑞2
𝑝 − 𝑌 2

𝑝 ) + 𝑟𝑝√𝑞2
𝑝 − 𝑌 2

𝑝 ] d
d𝑌𝑝

[[(𝑞2
𝑝 − 𝑌 2

𝑝 ) + 𝑟𝑝√𝑞2
𝑝 − 𝑌 2

𝑝 ] d
d𝑌𝑝

]

= [(𝑞2
𝑝 − 𝑌 2

𝑝 ) + 𝑟𝑝√𝑞2
𝑝 − 𝑌 2

𝑝 ]
(
((−2𝑌𝑝 −

𝑟𝑝𝑌𝑝

√𝑞2
𝑝 − 𝑌 2

𝑝 )
))

+[(𝑞2
𝑝 − 𝑌 2

𝑝 ) + 𝑟𝑝√𝑞2
𝑝 − 𝑌 2

𝑝 ]
2 d2

d𝑌 2
𝑝

. (5.8)
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