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1 Intro
This paper characterizes diesel oil’s molecular composition by computationally generating and
optimizing pentane-hexane conformers with varied orientations. Vibrational analysis yields
infrared spectra which are compared to experimental terahertz time-domain spectroscopy data.
The goal is to identify possible molecular structures of diesel oil based on spectral similarity
acknowledging that pentane-hexane configurations are simplified models.

Figure 1:  Computationally generated 3D conformers of pentane (left) and hexane (right).

2 Methods
This study employed a multi-step computation to investigate the structural and vibrational
properties of pentane and hexane molecules in stacked configurations. The methodology encom-
passed conformer generation, rigorous geometry optimization using density functional theory
(DFT), and subsequent vibrational analysis to simulate infrared (IR) and Raman spectra,
particularly focusing on the terahertz (THz) region.

2.1 Initialize molecules and conformers
We started with the generation of conformers for pentane and hexane molecules. This was
performed separately for each alkane using the rdkit cheminformatics toolkit. Following con-
former generation, various molecular configurations were prepared such as individual molecules
and pairs of identical molecules stacked on different molecules. The stacking arrangement was
systematically varied by considering the number 𝑠 of stacked molecules, the principal axis
of stacking 𝑎 (𝐞0, 𝐞1, 𝐞2), and the intermolecular distance 𝑑 between the adjacent molecules.
An initial, less computationally demanding geometry optimization was performed on these
configurations using the ETKDG method within rdkit. Representative molecular structures,
corresponding to those depicted in Figure 2 and Figure 3, were visualized from these optimized
conformers.

These generated conformers in 𝑥𝑦𝑧 coordinates served as the input for the subsequent ab
initio calculations. To facilitate these calculations, molecular objects compatible with pyscf,
our chosen ab initio software package, were constructed. A key aspect of this study was the
generation of two distinct datasets based on the choice of basis set. We imported the 𝑥𝑦𝑧



data from the conformers and then employed either the minimal STO-3G basis set or the more
extensive 6-311++G(2d,2p) basis set, which we will refer to as sto3g and 6311g, respectively. This
dual-basis set approach was chosen to compare the accuracy achievable with a minimal basis
against a larger, more computationally expensive one, particularly for predicting properties
relevant to non-covalent interactions.
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Figure 2:  Pentane and hexane stacked 𝑠 = 1 times along the axes 𝑎 = {𝐞0, 𝐞1, 𝐞2} with
separation distances 𝑑 = {2, 3, 4, 5}.
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Figure 3:  Pentane and hexane stacked 𝑠 = 2 times along the axes 𝑎 = {𝐞0, 𝐞1, 𝐞2} with
separation distances 𝑑 = {2, 3, 4, 5}.



The selection of the 6311g basis set was deliberate, given that the interactions in stacked alkanes
are predominantly non-covalent van der Waals forces. For such interactions, basis sets require
specific features.

1. Polarization functions. The (2d,2p) notation indicates the inclusion of d-type polarization
functions on heavy non-hydrogen atoms and p-type polarization functions on hydrogen
atoms. These are essential for accurately describing the distortions of electron clouds that
occur during intermolecular interactions.

2. Diffusion functions. The ++ notation signifies the addition of diffusion functions on both
heavy atoms and hydrogen atoms. Diffusion functions are crucial for describing the electron
density far from the nucleus which is critical for modeling long-range interactions like van
der Waals forces accurately.

While the 6-311++G(2d,2p) basis set is relatively modest compared to those employed for
high-accuracy quantum chemical calculations, its inclusion of both polarization and diffusion
functions makes it suitable for capturing the essential physics of the systems under study. Future
investigations with greater computational resources could explore even larger basis sets, such
as correlation-consistent basis sets aug-cc-pVDZ or aug-cc-pVTZ, to further refine the results.

2.2 Optimize geometry
Following this, we performed a more rigorous geometry optimization for each configuration using
the geometric optimizer interface with pyscf. The electronic structure calculations underpinning
the optimization were carried out using DFT. Specifically, we employed the restricted Kohn-
Sham (RKS) approach as the stacked alkane systems are expected to be closed-shell, that is
all electrons are paired. RKS is generally the most computationally efficient and stable choice
for such systems, assuming that alpha and beta spin electrons occupy the same set of spatial
orbitals.

The choice of exchange-correlation (XC) functional was B3LYP augmented with the D4 dispersion
correction yielding B3LYP-D4. This selection is critical because alkane stacking is predominantly
governed by van der Waals forces, specifically London dispersion forces. The B3LYP functional
is a widely used hybrid functional, and the D4 correction significantly enhances its ability to
accurately model non-covalent interactions. While other functionals, such as the range-separated
hybrid ωB97X-D, are also well-suited for non-covalent interactions and could be considered in
future work, B3LYP-D4 represents a robust general-purpose choice for this study.

In Kohn-Sham DFT (KS-DFT), as originally proposed by Kohn and Sham, the complex
interacting electron system is mapped onto a fictitious system of non-interacting electrons
that share the same ground-state electron density. This conceptual framework allows KS-DFT
calculations to be computationally similar to Hartree-Fock (HF) theory, but with a modified
effective potential. The total electronic energy in KS-DFT is expressed as

𝐸 = 𝑇𝑠 +𝐸ext +𝐸𝐽 +𝐸XC

where 𝑇𝑠 is the kinetic energy of the non-interacting reference system, 𝐸ext is the energy due to
the external potential from the nuclei, 𝐸𝐽  is the classical coulomb repulsion or Hartree energy,
and 𝐸XC is the exchange-correlation energy. The 𝐸XC term encapsulates all the many-body
quantum mechanical effects and is approximated by a density functional.

The geometric optimizer iteratively refines the molecular geometry. In each step, it calculates
the total energy and the forces, which are gradients, on each atom using the specified DFT



method, which is RKS with B3LYP-D4 functional and the chosen basis set, for the current
geometry. These forces are then used by the optimizer to predict atomic displacements that will
lead to a lower energy structure. The atomic coordinates within the pyscf molecule object are
updated, and the process is repeated until the geometry converges to a local minimum on the
potential energy surface, or a predefined maximum number of optimization steps is reached. The
mean-field (mf) object representing the RKS solution holds all necessary information including
energy and gradients required by the optimizer.

2.3 Perform vibrational analysis
Subsequent to successful geometry optimization, we conducted vibrational analyses to predict
IR and Raman spectra. An RKS object was again created using the dft module, specifying the
B3LYP-D4 exchange-correlation functional. To enhance computational efficiency, density fitting
also known as resolution of identity (RI) was applied. This technique approximates the compu-
tationally expensive two-electron integrals using an auxiliary basis set, significantly reducing
the cost of DFT calculations. For these demanding calculations, we leveraged GPU acceleration
using an available NVIDIA A100 instance, which can substantially speed up the self-consistent
field (SCF) iterations and subsequent Hessian computation.

After the SCF procedure converged, yielding the electronic energy, electron density, and
molecular orbitals, a Hessian object associated with the mf object was created. The Hessian
is crucial for characterizing stationary points on the potential energy surface; a true local
minimum exhibits a positive definite Hessian where all eigenvalues are positive. Furthermore,
the eigenvalues and eigenvectors of the mass-weighted Hessian matrix directly relate to the
vibrational frequencies and normal modes of the molecule, respectively.

The vibrational frequencies and IR intensities were then calculated. This involved diagonalizing
the mass-weighted Hessian matrix. The square roots of the resulting eigenvalues yield the
vibrational frequencies. IR intensities were computed based on the changes in the molecular
dipole moment during each normal mode of vibration, indicating how strongly each mode will
absorb infrared radiation.

To facilitate comparison with experimental spectra, the discrete set of calculated IR frequencies
(in wavenumbers, cm−1) and their corresponding intensities were transformed into a continuous,
broadened spectrum. This broadening was achieved by convolving each discrete vibrational
peak with a Lorentzian lineshape function. The wavenumbers were also converted to frequencies
in THz using the conversion factor

1
cm
× 2.998 × 108m

s
× 1 THz
1012 Hz

= 102 × 2.998 × 108 × 10−12 THz = 2.998 × 10−2 THz.

Intensities were subsequently normalized for presentation. The resulting spectral data files were
named systematically using the format ir-{stack}{axis}{distance}, where stack refers to the
number of times a component molecule is stacked onto itself before being paired with the
stack of another component molecule, axis denotes the geometric stacking axis, and distance
indicates the approximate intermolecular separation defined relative to C-H bond lengths.

2.4 Compare with experimental data
The simulated THz spectra obtained from these computational procedures, particularly for
hexane and pentane, were then qualitatively and quantitatively compared with experimental
terahertz time-domain spectroscopy (THz-TDS) data for components of diesel fuel, as reported
by Ponceca et al. in their study on Kuwaiti diesel oil. This comparison aims to validate the



computational methodology and provide insights into the molecular origins of spectral features
observed in complex hydrocarbon mixtures.

3 Results
This section presents a series of plots comparing experimental THz spectra of diesel components
with simulated spectra of pentane and hexane conformers.
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Figure 4:  Experimental THz spectra for various RA series diesel oil samples.
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Figure 5:  Experimental THz spectra for various SA series diesel oil samples.

The experimental THz spectra for various diesel oil samples, labeled as RA and SA series,
consistently exhibit broad absorption features across the plotted frequency range at approxi-
mately 0-18 THz. While the overall shape is a broad continuum, there are discernible variations
in intensity and the subtle contours of these features among the different experimental samples.
Some samples in Figure 4 show more pronounced shoulders or peaks in the 12-16 THz region
compared to others. Similar variability is seen in Figure 5. This suggests that while the
general THz response of diesel components is characterized by broad absorption, the specific



composition or concentration of different molecular species within each sample leads to these
observed variations.
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Figure 6:  Simulated THz spectra for the STO-3G basis set showing intensity vs. wavenumber
(left) and intensity vs. frequency in THz (right).

Simulations using the minimal sto3g basis set produce spectra with several relatively sharp,
distinct peaks. The left plot in Figure 6 shows peaks in wavenumbers at around 700, 1400, and
3000 cm−1. The right plot with frequency in THz shows features at around 4, 6, 8, and 10 Thz,
and a dominant peak around 14 THz.
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Figure 7:  Simulated THz spectra for the 6−311++G(2d,2p) basis set showing intensity vs.
wavenumber (left) and intensity vs. frequency in THz (right).

The more extensive 6311g basis set also yields spectra with sharp peaks as shown in Figure 7.
In the wavenumber plot, prominent peaks are seen near 1500 cm−1 and a very strong set of
peaks around 3000 cm−1. The corresponding THz plot shows activity below 2 THz, distinct
peaks around 4 and 8-10 THz, and a very intense, sharp peak at 14 THz.

0 2 4 6 8 10 12 14 16 18
frequency

0.0

0.2

0.4

0.6

0.8

1.0

in
te

ns
it

y

RA162T SA121TS
RA166TL SA151T
RA179T SA159T
RA194T ir-102
RATAWI ir-103
SA108T ir-104
SA120T ir-105

sample

6311g
sto3g
z_exp

basis

Figure 8:  Comparison of experimental THz spectra with simulated spectra from STO-3G and
6−311++G(2d,2p) basis sets for select configurations.



Figure 8 overlays experimental data with simulated spectra from both sto3g and 6311g basis
sets for select configurations from ir-102 to ir-105. Recall that spectral data were named
systematically using the scheme ir-{stack}{axis}{distance}. The 6311g simulations generally
show higher intensity peaks, particularly the strong feature around 14 THz. Both basis sets
predict activity in similar regions such as at low THz, 4-10 THz, and 14 THz. Note that we
had to scale the spectra upon conversion.

Visually, the 6311g simulations appear to align somewhat better with the regions where exper-
imental data shows absorption, especially in capturing the higher frequency activity around
12-16 THz, although the experimental features are much broader. This is expected courtesy
of this basis set’s inclusion of polarization and diffusion functions. So we prefer this moving
forward in the analysis as it better models the intermolecular interactions dominant in these
systems, likely leading to more physically realistic though still simplified spectra.

The next figures explore the effect of stacking axis (𝐞0, 𝐞1 ,, 𝐞2) and the number of stacked
molecules (𝑠 = 1 in Figure 9, 𝑠 = 2 in Figure 10) on the simulated THz spectra.
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Figure 9:  Spectral features from simulated THz data from the 6−311++G(2d,2p) basis set for
𝑠 = 1 stacks on various axis (𝐞0, 𝐞1, 𝐞2).

For 𝑥-axis (𝐞0), the spectra are quite similar, showing a broad rise to a dominant peak around
14 THz, with minor features around 2-4 THz and 8-10 THz, as shown in Figure 9. For 𝑦-axis



(𝐞1), the spectra also show a dominant 14 THz peak, but the features in the 2-10 THz region
are slightly more pronounced and varied among the different samples. For 𝑧-axis (𝐞2), the 14
THz peak persists. The 2-10 THz region shows more distinct features, particularly a noticeable
peak or shoulder developing around 3-4 THz and another around 8 THz, with more variability
between samples.
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Figure 10:  Spectral features from simulated THz data from the 6−311++G(2d,2p) basis set for
𝑠 = 2 stacks on various axis (𝐞0, 𝐞1, 𝐞2).

In Figure 10, trends are similar to that of 𝑠 = 1 stacks. The 𝑥-axis (𝐞0) shows the most consistent
spectra among its samples. The 𝑦-axis (𝐞1) shows slightly more variation in the mid-frequency
range. The 𝑧-axis (𝐞2) again shows the most complex features in the 2-10 THz range, with some
configurations exhibiting sharper and more intense peaks around 7-9 THz compared to that of
𝑠 = 1 stacks.
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Figure 11:  Spectral features from simulated THz data from the 6−311++G(2d,2p) basis set for
both 𝑠 = 1 and 𝑠 = 2 stacks on various axis (𝐞0, 𝐞1, 𝐞2).

Combining both 𝑠 = 1 and 𝑠 = 2 stacking in Figure 11, the dominant 14 THz feature is present
across all configurations and stack numbers. Stacking along 𝐞2 axis consistently produces more
structured spectra in the 2-10 THz region compared to 𝐞0and 𝐞1. Increasing the stack number
from 𝑠 = 1 to 𝑠 = 2 appears to slightly enhance or sharpen some features, particularly for 𝐞2
axis configurations in the 6-10 THz region.

Overall, we observe that the simulated THz spectra are sensitive to the specific 3D arrangement
(stacking axis, intermolecular distance) and, to a lesser extent, the number of stacked units. The
consistent appearance of features in certain frequency bands (2-5, 6-10, and 14 THz) across many
configurations, which are also present in the experimental THz-TDS data of diesel oil, suggests
these could be characteristic vibrational modes of interacting pentane-hexane system. This
supports the paper’s premise that these simpler alkane configurations can serve as foundational
models for understanding the more complex molecular interactions and vibrational signatures
in diesel fuel.
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Figure 12:  Experimental THz spectra with simulated spectra from the 6−311++G(2d,2p) basis
set for 𝑠 = 1 stacks.
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Figure 13:  Experimental THz spectra with simulated spectra from the 6−311++G(2d,2p) basis
set for 𝑠 = 2 stacks.

4 Conclusion
The computational THz spectra of stacked pentane-hexane conformers, particularly those
generated using the 6−311++G(2d,2p) basis set, show absorption features in frequency regions
that are also present in the experimental THz-TDS data of diesel oil components. Despite the



simplified nature of the models, the consistent prediction of THz activity in specific bands
across various stacking orientations and distances suggests these may represent characteristic
intermolecular vibrational modes or collective motions of short-chain alkanes in condensed or
aggregated phases. These simulated features, while sharper than the broad experimental bands,
can guide the interpretation of the experimental diesel spectra.

Future work could involve simulating mixtures or larger, more representative alkane structures
to achieve even closer agreement and potentially deconvolve the contributions of different mole-
cular motifs to the overall diesel THz spectrum. The current study successfully demonstrates
that computational modeling of simplified systems provides valuable insights into the types of
molecular vibrations that contribute to the THz spectrum of complex fuels like diesel.
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