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Boussinesq equation
• Is a physically and mathematically interesting nonlinear

partial differential equation (pde)
• Models diverse wave phenomena across fluids, plasmas,

and materials

𝜕2
𝑡 𝑢 − 𝑐2𝜕2

𝑥𝑢

−𝛼𝜕2
𝑥𝑢2 − 𝛽𝜕4

𝑥𝑢 = 0

• Shows how nonlinearity and dispersion balance to form stable,
particle-like waves

• Reveals potential for singularity formation and decay, pushing
the boundaries of classical soliton understanding [1]

The idea behind our method
• We exploit 𝑌 (𝜉) = tanh 𝜉 and its self-similarity on differentiation

d𝜉𝑌 = sech2 𝜉 = 1 − 𝑌 2, d2
𝜉𝑌 = −2𝑌 + 2𝑌 3, d3

𝜉𝑌 = −2 + 8𝑌 2 − 6𝑌 4, …

• Then we replace 𝑌 (𝜉) with this ansatz first
presented in [2] and inspired by half-angle
identity, where 0 ≤ 𝑝 ≤ 1, 𝑝 ∈ ℝ

𝑌𝑝,𝜉 = (1 + 𝑝)
tanh 𝜇𝜉

2

1 + 𝑝 tanh2 𝜇𝜉
2

• Finally we extend the solution set to include those
based on coth, csch by extending the series [3] to 𝑆(𝑌 ) = ∑

𝑀

𝑘=0
𝑎𝑘𝑌 𝑘 + ∑

𝑀

𝑘=1
𝑏𝑘𝑌 −𝑘

Generalized tanh method and its extension

extended
generalized

generalized

standard 1: transform
pde, 𝜉 → ode

2: solve derivatives
𝑌 , d𝑌 → d𝜉, …, d𝑟

𝜉

3: balance
𝑢𝑛 = d𝑟

𝜉 → 𝑀
4: solve system of equations

0 = ∑𝑀
𝑘=0 𝑎𝑘𝑌 𝑘 → 𝑎𝑘, 𝜇

5: substitute back
𝑎𝑘, 𝜇, 𝑌 → 𝑢𝑛(𝑥, 𝑡)

1.1: apply ansatz
𝑌𝑝 = (1 + 𝑝) tanh 𝜇𝜉

2
1+𝑝 tanh2 𝜇𝜉

2

1.2: substitute tricks
𝑌𝑝,𝜇 → 𝑌𝑝,𝜔

4.1: find forcing
functions 𝐹(𝑌𝑝)

3.1: extend system of equations
∑𝑀(𝑎𝑘𝑌 𝑘 + 𝑏𝑘𝑌 −𝑘) → 𝑎𝑘, 𝑏𝑘, 𝜇

Figure 1:  Procedures of the standard (std) tanh method [4], along with our proposed generalization (gen) and subsequent extension (ext gen) of the method.

Results
For the classical Boussinesq equation with 𝑐 = 1, 𝛼 = 3, and 𝛽 = 1, we do

1: transform pde + 1.1: apply ansatz
• Using the transformation 𝜉 = 𝜇(𝑥 − 𝑐𝑡) and integrating twice, we get

𝜕2
𝑡 𝑢 − 𝜕2

𝑥𝑢 − 𝜕2
𝑥(3𝑢2) − 𝜕4

𝑥𝑢 = 0 ⟹ (𝑐2 − 1)𝑢 − 3𝑢2 − d2
𝜉𝑢 = 0.

1.2: substitute tricks + 2: solve derivatives
• Tackling via d𝜉 = d𝜉𝜔 ⋅ d𝜔𝑌𝑝 ⋅ d𝑌𝑝

 and d2
𝜉 = d𝜉 ⋅ (d𝜉𝑌𝑝 ⋅ d𝑌𝑝

), we compute

d𝜉 = 𝜇[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1
2 ]d𝑌𝑝

,

d2
𝜉 = 𝜇2[(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉) + 𝑟𝑝(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉)

1
2 ]

2
d2

𝑌𝑝

+𝜇2[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1
2 ][−2𝑌𝑝,𝜉 − 𝑟𝑝𝑌𝑝,𝜉(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉)

−1
2 ]d𝑌𝑝

,

where 𝑞𝑝 ≡ (𝑝 + 1)/(2√𝑝) and 𝑟𝑝 ≡ (𝑝 − 1)/(2√𝑝) = (𝑝 − 1)/(𝑝 + 1)𝑞𝑝.

3: balance + 3.1: extend system of equations
• Balancing the highest-order nonlinear term with highest-order derivative

𝑢2 = d2
𝜉𝑢 ⟹ 𝑢(𝑌𝑝,𝜉) = 𝑎0 + 𝑎1𝑌𝑝,𝜉 + 𝑎2𝑌 2

𝑝,𝜉 + 𝑏1𝑌 −1
𝑝,𝜉 + 𝑏2𝑌 −2

𝑝,𝜉 .

4.1: find forcing functions
• This leads to a more extensive system of equations with the terms involving non-

integer powers of 𝑌𝑝, which we already isolate into the forcing function

𝐹(𝑌𝑝) = 𝜇2𝑟[−2𝑏2𝑞2𝑌 −2
𝑝 − 𝑏1𝑞2𝑌 −1

𝑝 + 2𝑏2 + (𝑎1𝑞2 + 𝑏1)𝑌𝑝 + 2𝑎2𝑞2𝑌 2
𝑝 − 𝑎1𝑌 3

𝑝 − 2𝑎2𝑌 4
𝑝 ](𝑞2

𝑝 − 𝑌 2
𝑝 )−1

2

+𝜇2𝑟[−12𝑏2𝑞2𝑌 −4
𝑝 − 4𝑏1𝑞2𝑌 −3

𝑝 + 8𝑏2𝑌 −2
𝑝 + 2𝑏1𝑌 −1

𝑝 + (−4𝑎2𝑞2 − 𝑏1𝑞2) + 2𝑎1𝑌𝑝 + 8𝑎2𝑌 2
𝑝 ](𝑞2

𝑝 − 𝑌 2
𝑝 )

1
2 .

• We obtain a forced version of the Boussinesq equation

𝜕2
𝑡 𝑢 − 𝜕2

𝑥𝑢 − 3𝜕2
𝑥𝑢2 − 𝜕4

𝑥𝑢 = 𝐹(𝑌𝑝).

• This modification allowed us to eliminate terms with non-integral powers of 𝑌 .
Importantly, the original, unforced Boussinesq equation is recovered by setting
𝑝 = 1, which makes 𝑟𝑝 = 0 and therefore 𝐹(𝑌𝑝) = 0.

5: substitute back
• From an initial set of 14 solutions, we identified 8 unique families: 2 are solitons,

2 are non-soliton traveling waves, and the remaining solutions are plane periodic
solutions. 𝑢1, 𝑢3, 𝑢6 are representative solutions per type

𝑢1(𝑥, 𝑡, 𝑝) = 𝑐2 − 1
6

(1 + 𝑃1𝑃 2
0 ) + 2(1 − 𝑐2)(𝑝 + 1)2𝑃 2

0

[
[
[ tanh(𝑃0

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

1 + 𝑝 tanh2(𝑃0

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))]

]
]

2

𝑢3(𝑥, 𝑡, 𝑝) = 𝑐2 − 1
6

(1 + 𝑃1𝑃 2
0 ) + (1 − 𝑐2)𝑝2 + 1

4𝑝2 𝑃 2
0

[
[
[1 + 𝑝 tanh2(𝑃0

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

tanh(𝑃0

√
𝑐2−1
2 (𝑥 − 𝑐𝑡)) ]

]
]

2

𝑢6(𝑥, 𝑡, 𝑝) = 𝑐2 − 1
6

(1 − 𝑃1𝑃 2
0 ) + 2(1 − 𝑐2)(𝑝 + 1)2𝑃 2

0

[
[
[ tan(𝑃0

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

1 − 𝑝 tan2(𝑃0

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))]

]
]

2

where 𝑃0 ≡ √𝑝/ 4√(3𝑝2 + 1)(𝑝2 + 3) and 𝑃1 ≡ (3𝑝2 + 2𝑝 + 3)/𝑝.

• Quick sanity check: we set the parameter 𝑝 = 1 and get

𝑢1(𝑥, 𝑡, 𝑝 = 1) = 𝑐2 − 1
2

+ 2(1 − 𝑐2)
[
[
[ tanh(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

1 + tanh2(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡))]

]
]

2

= 𝑐2 − 1
2

sech2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡)) = 𝑢1(𝑥, 𝑡)std

𝑢3(𝑥, 𝑡, 𝑝 = 1) = 𝑐2 − 1
2

+ 1 − 𝑐2

8
[
[
[1 + tanh2(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

tanh(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡)) ]

]
]

2

= −𝑐2 − 1
2

csch2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡)) = 𝑢3(𝑥, 𝑡)ext std

𝑢6(𝑥, 𝑡, 𝑝 = 1) = −𝑐2 − 1
6

+ 2(1 − 𝑐2)
[
[
[ tan(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

1 − tan(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡))]

]
]

2

= −𝑐2 − 1
6

[1 + 3 tan2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))] = 𝑢4(𝑥, 𝑡)std

(a): 𝑢1 : 𝑐 = 2, |𝑥, 𝑡| ≤ 4, 𝑝 = 1.0 (b): 𝑢1 : 𝑐 = 2, |𝑥| ≤ 10, 𝑡 = 0 (c): 𝑢1 : 𝑐 = 2, |𝑥| ≤ 10, 𝑡 = 2 (d): 𝑢1 : 𝑐 = 2, |𝑥| ≤ 10, 𝑡 = 4

(e): 𝑢1 : 𝑐 = 2, |𝑥, 𝑡| ≤ 4, 𝑝 = 0.6 (f): 𝑢3 : 𝑐 = 2, |𝑥| ≤ 10, 𝑡 = 0 (g): 𝑢3 : 𝑐 = 2, |𝑥| ≤ 10, 𝑡 = 2 (h): 𝑢3 : 𝑐 = 2, |𝑥| ≤ 10, 𝑡 = 4

(i): 𝑢1 : 𝑐 = 2, |𝑥, 𝑡| ≤ 4, 𝑝 = 0.2 (j): 𝑢6 : 𝑐 = 2, |𝑥| ≤ 10, 𝑡 = 0 (k): 𝑢6 : 𝑐 = 2, |𝑥| ≤ 10, 𝑡 = 2 (l): 𝑢6 : 𝑐 = 2, |𝑥| ≤ 10, 𝑡 = 4

Figure 2:  Spacetime evolutions (a, e, i) of a soliton solution 𝑢1 for different 𝑝 values.
Time evolutions (b, c, d) of a soliton solution 𝑢1, (f, g, h) of a non-soliton traveling wave

solution 𝑢3, (j, k, l) of a plane periodic solution 𝑢6, for parameter 𝑝 = 0.2, 0.6, 1.0.

Conclusions
We introduced a novel extension following a generalization of tanh method for nonlinear
pdes, featuring a parameter 𝑝 for tunability. Applied to Boussinesq equation, we identified
8 solution families including solitons, non-soliton traveling waves, and plane periodic wave
solutions. We found that our method encompasses standard tanh solutions when 𝑝 = 1.
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