
Novel exact solutions for forced
Boussinesq equation via

extended generalized tanh-
function method

Ralph Torres

Ateneo de Manila University

2025-05-24



1. Introduction



1.1. Boussinesq equation 1. Introduction
• Represents one of the most challenging areas in mathematical physics

for studying nonlinear wave phenomena
• Originally developed for long waves in shallow water (1870s), now

appears in diverse systems including plasmas [1,2], the atmosphere
[3,4], acoustic-like regimes [5], dielectrics [6], antiferromagnets [7],
and nonlinear strings [8]

• With bidirectional wave propagation, unlike KdV say, has the form

𝜕2
𝑡 𝑢 − 𝑐2𝜕2

𝑥 − 𝛼𝜕2
𝑥𝑢2 − 𝛽𝜕4

𝑥𝑢 = 0
• Closely connected to KdV, Kadomtsev-Petviashvili, and nonlinear

Schrödinger equations under various conditions
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1.1. Boussinesq equation 1. Introduction

(a): Spatial domain (b): Intermediate mesh (c): Model at 𝑡 = 30 (d): Model at 𝑡 = 30

Figure 1:  Unstructured triangular meshes of the harbor geometry (a, b) and simulated model of the the waves on
the free surface at time 𝑡 (c, d) [9].
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1.1. Boussinesq equation 1. Introduction
• Has the following wave physics and characteristics

‣ Competing effects. Balance between nonlinearity (wave steepening)
and linear dispersion (wave spreading) enables soliton solutions

‣ Soliton properties. Particle-like waves with stable profile, constant
shape and speed, but can exhibit complex behaviors like singularity
formation

‣ Frequency dispersion. Accounts for broader range of wave
phenomena than classical shallow-water equations

‣ Mathematical variants. Different forms exist (well-posed vs ill-
posed) depending on parameter 𝛽 sign, with both classical forms
being completely integrable

Ralph Torres Novel exact solutions for forced Boussinesq equation via extended generalized tanh-function method 2025-05-24 4 / 92



1.2. Our research 1. Introduction
The problem and motivation
• Traditional approaches like standard tanh-function method produce

solutions with fixed characteristics, limiting modeling flexibility
• We address this limitation through extended generalized tanh-

function method producing tunable solution families through the
incorporation of an ansatz with tunable parameter 𝑝
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1.2. Our research 1. Introduction
Research objectives and scope
• Primary goal. Derive new tunable soliton, periodic, and traveling

wave solutions for classical Boussinesq equation with 𝛼 = 3, 𝛽 = 1
• Forced equation insight. Demonstrate that solutions for 𝑝 ≠ 1 pertain

to forced Boussinesq equation with forcing term dependent on
parameter 𝑝

• Method validation. Show that standard tanh method solutions are
recovered as special cases, confirming method consistency

• Parameter influence. Systematically analyze how tunable parameter 𝑝
affects solution characteristics and physical interpretation
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2. Methodology



2.1. Generalization of the tanh method 2. Methodology
Building upon the standard tanh-function approach, we replace the
traditional introductory function 𝑌  with a novel ansatz first presented
by Buenaventura, Dingel and Calgo in [10], inspired by the half-angle
identity in tanh-function and parametrized by a tunable parameter 𝑝

𝑌𝑝,𝜉 = 𝑌𝑝(𝜇𝜉) = (1 + 𝑝)
tanh 𝜇𝜉

2
1 + 𝑝 tanh2 𝜇𝜉

2

, 0 ≤ 𝑝 ≤ 1, 𝑝 ∈ ℝ.

The key feature of this ansatz is the tunable parameter 𝑝. It could allow
for solutions to be either adaptively tailored to the specific problem at
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2.1. Generalization of the tanh method 2. Methodology
hand or precisely fine-tuned to meet specific conditions. Following
Malfliet’s approach outlined in the figure above, we transform the pde

𝑝(𝑢, 𝜕𝑡𝑢, 𝜕𝑥𝑢, 𝜕2
𝑡 𝑢, 𝜕2

𝑥𝑢, 𝜕𝑥𝜕𝑡𝑢, …) = 0

into a nonlinear ordinary differential equation

𝑃(𝑈, d𝜉𝑈, d2
𝜉𝑈, …) = 0

together with their respective solutions 𝑢(𝑥, 𝑡) and 𝑈(𝜉) using the
variable

𝜉 = 𝑥 − 𝑐𝑡.
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2.1. Generalization of the tanh method 2. Methodology
Assuming the integration constants vanish, we iteratively integrate this
ode until the desired order is achieved, say until

∫ ⋯ ∫ 𝑃(𝑈, d𝜉𝑈, d2
𝜉𝑈, d3

𝜉𝑈, …; 𝑌 ) = 0,

as long as all terms retain derivatives. We then compute for the higher-
order derivatives

d𝜉, d2
𝜉 , d3

𝜉 , …, d𝑛
𝜉

with the highest order 𝑛 present in the integrated ode. Note that this
computation is particularly cumbersome.
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2.1. Generalization of the tanh method 2. Methodology
Next, we assume that the series

𝑈 = 𝑆(𝑌 ) = ∑
𝑀

𝑘=0
𝑎𝑘𝑌 𝑘,

remains admissible as a solution under this generalized tanh method,
allowing

𝑢(𝑥, 𝑡) = 𝑈(𝜉) = 𝑆(𝑌 )

to also be a solution to the ode. We balance the highest order nonlinear
term with the highest order derivative following the mappings

𝑢 → 𝑀, 𝑢2 → 2𝑀, …, 𝑢𝑛 → 𝑛𝑀;
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2.1. Generalization of the tanh method 2. Methodology

𝜕𝑢 → 𝑀 + 1, 𝜕2𝑢 → 𝑀 + 2, …, 𝜕𝑟𝑢 → 𝑀 + 𝑟.

We employ this to balance the highest order nonlinear term with the
highest order derivative in the integrated ode and determine the balance
constant 𝑀  to use in the series.

We then substitute the computed derivatives and the series with the
determined 𝑀  into the integrated ode, grouping terms according to
their powers in 𝑌 . For terms with non-integral powers of 𝑌 , we
introduce forcing functions 𝐹(𝑌 ) to eliminate them resulting in

∫ ⋯ ∫ 𝑃(𝑈, d𝜉𝑈, d2
𝜉𝑈, d3

𝜉𝑈, …; 𝑌 ) = 𝐹(𝑌 ).
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2.1. Generalization of the tanh method 2. Methodology
This transforms our ode, and by extension the pde, into a forced version.
To be consistent for all values of 𝑌 , the coefficient expressions must
each equate to zero. This results in a nonlinear system of algebraic
equations for the mathematical coefficients 𝑎𝑛 for 𝑛 ≥ 0, 𝑛 ∈ ℤ and
physical coefficients such as the wave number 𝜇 which we’ll solve.

Finally, we substitute the determined solutions for the coefficients and
parameters back into the integrated ode, apply restricting conditions
where necessary, and obtain a set of tunable soliton and plane periodic
solutions.
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2.1. Generalization of the tanh method 2. Methodology
In summary…

std

gen

ext
gen

1: transform
pde, 𝜉 → ode

2: solve derivatives
𝑌 , d𝑌 → d𝜉, …, d𝑟

𝜉

3: balance
𝑢𝑛 = d𝑟

𝜉 → 𝑀
4: solve sys of eqs

0 = ∑𝑀
𝑘=0 𝑎𝑘𝑌 𝑘 → 𝑎𝑘, 𝜇

5: substitute back
𝑎𝑘, 𝜇, 𝑌 → 𝑢𝑛(𝑥, 𝑡)

1.1: apply ansatz
𝑌𝑝 = (1 + 𝑝) tanh 𝜇𝜉

2
1+𝑝 tanh2 𝜇𝜉

2

1.2: substitute tricks
𝑌𝑝,𝜇 → 𝑌𝑝,𝜔

4.1: find forcing
functions 𝐹(𝑌𝑝)

3.1: extend sys of eqs
∑𝑀(𝑎𝑘𝑌 𝑘 + 𝑏𝑘𝑌 −𝑘) → 𝑎𝑘, 𝑏𝑘, 𝜇

Figure 2:  Procedures of the standard (std) tanh method [11,12], along with generalization (gen) [10,13–15], and
subsequent novel extension (ext gen) of the generalization.
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2.2. Extension of the gen tanh method 2. Methodology
In the previous method, we only have algebraic terms in positive
powers of Y in the finite series expansion above, which restricted the
solution space to tanh and sech-based solutions. To explore a broader
set of solutions, particularly those based on coth and csch, we extend
the series to

𝑆(𝑌 ) = ∑
𝑀

𝑘=0
𝑎𝑘𝑌 𝑘 + ∑

𝑀

𝑘=1
𝑏𝑘𝑌 −𝑘,

as inspired by an extension of the tanh method presented in [16,17]. To
the best of our knowledge, this specific method has not been previously
reported in the literature.
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2.3. Application to the Boussinesq equation 2. Methodology
After formulating our proposed generalization of the tanh-function
method along with its extension, we implement both methods to obtain
new tunable solutions to the classical form of the Boussinesq equation
with 𝛼 = 3 and 𝛽 = 1 [18–20]

𝜕2
𝑡 𝑢 − 𝑐2𝜕2

𝑥𝑢 − 𝛼𝜕2
𝑥𝑢2 − 𝛽𝜕4

𝑥𝑢 = 0.
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3. Results and discussion



3.1. Solutions via std tanh method 3. Results and discussion
Solutions to the pde

For 𝑐2 > 1 (supercritical wave speed)
• 𝑦0 gives trivial solutions
• 𝑦1 and 𝑦2 give the soliton solutions

𝑢1(𝑥, 𝑡)std = 𝑐2 − 1
2

[1 − tanh2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

sech2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))
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3.1. Solutions via std tanh method 3. Results and discussion

𝑢2(𝑥, 𝑡)std = −𝑐2 − 1
6

[1 − 3 tanh2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))].

• In the opposite regime, where 𝑐2 < 1 (subcritical wave speed)
‣ 𝑦1, 𝑦2 give plane periodic solutions

𝑢3(𝑥, 𝑡)std = 𝑐2 − 1
2

[1 + tan2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

sec2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))
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3.1. Solutions via std tanh method 3. Results and discussion

𝑢4(𝑥, 𝑡)std = −𝑐2 − 1
6

[1 + 3 tan2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))].

(a): 𝑢1,std : 𝑐 = 2, |𝑥| ≤ 10 (b): 𝑢2,std : 𝑐 = 1
2 , |𝑥| ≤ 10 (c): 𝑢3,std : 𝑐 = 2, |𝑥| ≤ 10 (d): 𝑢4,std : 𝑐 = 1

2 , |𝑥| ≤ 10

Figure 3:  Plots of the solutions to the classical Boussinesq equation via standard tanh method, with 𝑡 = 0, 2, 4.
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3.1. Solutions via std tanh method 3. Results and discussion

Findings
• We note that 𝑢1, 𝑢2, 𝑢3, 𝑢4 correspond to the solutions found in [21].

Solutions 𝑢1 and 𝑢2 are the classic bell-shaped solitons, 𝑢3 and 𝑢4
represent a train of periodic waves with singularities

• The standard tanh method, while effective for finding these
fundamental solutions, is limited because the solution forms are fixed
once the balance coefficient 𝑀  is determined. It does not offer
inherent tunability beyond the wave speed 𝑐.
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3.2. Solutions via ext tanh method 3. Results and discussion
Solutions to the pde

For 𝑐2 > 1 (supercritical case)
• 𝑦0 yields trivial solutions
• 𝑦1 and 𝑦2 yield the soliton solutions

𝑢1(𝑥, 𝑡)ext std = 𝑐2 − 1
2

sech2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))

𝑢2(𝑥, 𝑡)ext std = −𝑐2 − 1
6

[1 − 3 tanh2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))],
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3.2. Solutions via ext tanh method 3. Results and discussion
• 𝑦3 and 𝑦4 yielded the non-soliton traveling wave solutions

𝑢3(𝑥, 𝑡)ext std = −𝑐2 − 1
2

csch2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))

𝑢4(𝑥, 𝑡)ext std = −𝑐2 − 1
6

[1 − 3 coth2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))].
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3.2. Solutions via ext tanh method 3. Results and discussion
• 𝑦5 and 𝑦6 initially appear to produce distinct solutions but do not

represent new 2-soliton solutions, in fact equivalent to previous ones

𝑢5(𝑥, 𝑡)ext std = −𝑐2 − 1
8

[coth2(
√

𝑐2 − 1
4

(𝑥 − 𝑐𝑡))

+ tanh2(
√

𝑐2 − 1
4

(𝑥 − 𝑐𝑡)) − 2]

= −𝑐2 − 1
2

csch2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))

= 𝑢3(𝑥, 𝑡)ext std
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3.2. Solutions via ext tanh method 3. Results and discussion

𝑢6(𝑥, 𝑡)ext std = 𝑐2 − 1
24

[3 coth2(
√

1 − 𝑐2

4
(𝑥 − 𝑐𝑡))

+3 tanh2(
√

1 − 𝑐2

4
(𝑥 − 𝑐𝑡)) + 2]

= 𝑢4(𝑥, 𝑡)ext std.
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3.2. Solutions via ext tanh method 3. Results and discussion
For the opposite regime where 𝑐2 < 1 (subcritical case)
• 𝑦1, 𝑦2, 𝑦3 and 𝑦4 give the plane periodic solutions

𝑢7(𝑥, 𝑡)ext std = 𝑐2 − 1
2

sec2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))

𝑢8(𝑥, 𝑡)ext std = −𝑐2 − 1
6

[1 + 3 tan2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

𝑢9(𝑥, 𝑡)ext std = 𝑐2 − 1
2

csc2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))
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3.2. Solutions via ext tanh method 3. Results and discussion

𝑢10(𝑥, 𝑡)ext std = −𝑐2 − 1
6

[1 + 3 cot2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

• Again, 𝑦5 and 𝑦6 in this regime lead to non-unique solutions because

𝑢11(𝑥, 𝑡)ext std = 𝑐2 − 1
8

[cot2(
√

1 − 𝑐2

4
(𝑥 − 𝑐𝑡))

+ tan2(
√

1 − 𝑐2

4
) + 2]
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3.2. Solutions via ext tanh method 3. Results and discussion

= 𝑐2 − 1
2

csc2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))

= 𝑢9(𝑥, 𝑡)ext std

𝑢12(𝑥, 𝑡)ext std = −𝑐2 − 1
24

[3 cot2(
√

𝑐2 − 1
4

(𝑥 − 𝑐𝑡))

+3 tan2(
√

𝑐2 − 1
4

(𝑥 − 𝑐𝑡)) − 2]

= 𝑢10(𝑥, 𝑡)ext std.
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3.2. Solutions via ext tanh method 3. Results and discussion

(a): 𝑢3,ext std : 𝑐 = 2, |𝑥| ≤ 10 (b): 𝑢4,ext std : 𝑐 = 1
2 , |𝑥| ≤ 10 (c): 𝑢9,ext std : 𝑐 = 2, |𝑥| ≤ 10 (d): 𝑢10,ext std : 𝑐 = 1

2 , |𝑥| ≤ 10

Figure 4:  Plots of the additional solutions to the classical Boussinesq equation via extended standard tanh
method, with 𝑡 = 0, 2, 4. The other solutions are found in Figure 3.
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3.2. Solutions via ext tanh method 3. Results and discussion
Findings
• Solutions 𝑢3 and 𝑢9 involving csch and csc functions represent waves

with singularities, with 𝑌 −𝑘 terms effectively doubling obtainable
solution forms

• Extended method uncovered richer variety of exact solutions
consistent with existing literature, though some coefficient
combinations produced redundant solutions
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3.3. Computing the derivatives d𝜉, d2
𝜉 3. Results and discussion

The core of our generalization lies in the novel ansatz

𝑌𝑝,𝜉 = 𝑌𝑝(𝜇𝜉) = (1 + 𝑝)
tanh 𝜇𝜉

2
1 + 𝑝 tanh2 𝜇𝜉

2

, 0 ≤ 𝑝 ≤ 1, 𝑝 ∈ ℝ.

introduced as a new independent variable where 𝜉 = 𝑥 − 𝑐𝑡 and 𝜇 is
wave number. To substitute this ansatz into the ode derived from the
Boussinesq equation, we expressed its derivatives d𝜉𝑌𝑝 and d2

𝜉𝑌𝑝 in
terms of 𝑌𝑝 itself. This subsection details this crucial mathematical step.

The derivation involved an auxiliary variable transformation
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3.3. Computing the derivatives d𝜉, d2
𝜉 3. Results and discussion

tanh 𝜇𝜉
2

= 1
√𝑝

tanh 𝜇𝜔
2

⟹ 𝑌𝑝,𝜉 = (1 + 𝑝)
1√𝑝 tanh 𝜇𝜔

2

1 + 𝑝 1
𝑝 tanh2 𝜇𝜔

2

= 𝑝 + 1
2√𝑝

2 tanh 𝜇𝜔
2

1 + tanh2 𝜇𝜔
2

= 𝑝 + 1
2√𝑝

tanh 𝜇𝜔

= 𝑌𝑝(𝜔) ≡ 𝑌𝑝,𝜔.
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3.3. Computing the derivatives d𝜉, d2
𝜉 3. Results and discussion

Note that d𝜉 = d𝜔𝑌𝑝 ⋅ d𝑌𝑝
= d𝜉𝜔 ⋅ d𝜔𝑌𝑝 ⋅ d𝑌𝑝

 and 𝜔 =
2
𝜇 arctanh(√𝑝 tanh 𝜇𝜉

2 ). Applying the chain rule, we first computed

d𝜔𝑌𝑝 = d𝜔𝑌𝑝,𝜔

= 𝑝 + 1
2√𝑝

𝜇(1 − tanh2 𝜇𝜔)

= 𝑝 + 1
2√𝑝

𝜇
[
[
[1 − (

2√𝑝
𝑝 + 1

)
2

(𝑝 + 1
2√𝑝

)
2

tanh2 𝜇𝜔
]
]
]

= 𝑝 + 1
2√𝑝

𝜇[1 − (
2√𝑝
𝑝 + 1

)
2

𝑌 2
𝑝,𝜔]
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3.3. Computing the derivatives d𝜉, d2
𝜉 3. Results and discussion

= 𝑝 + 1
2√𝑝

(
2√𝑝
𝑝 + 1

)
2

𝜇
[
[
[(𝑝 + 1

2√𝑝
)

2

− 𝑌 2
𝑝,𝜔

]
]
]

= 𝜇
𝑞𝑝

(𝑞2
𝑝 − 𝑌 2

𝑝,𝜔)

where 𝑞𝑝 ≡ 𝑝+1
2√𝑝 . Next, we computed

d𝜉𝜔 = 1
√𝑝

𝑝 − tanh2 𝜇𝜔
2

1 − tanh2 𝜇𝜔
2
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3.3. Computing the derivatives d𝜉, d2
𝜉 3. Results and discussion

= 1
√𝑝

𝑝 + 1
2

[(1 − 1) +
2𝑝 − 2 tanh2 𝜇𝜔

2
(𝑝 + 1)(1 − tanh2 𝜇𝜔

2 )
]

= 1
√𝑝

𝑝 + 1
2

[1 +
−(𝑝 − 1)(1 − tanh2 𝜇𝜔

2 ) + 2𝑝 − 2 tanh2 𝜇𝜔
2

(𝑝 + 1)(1 − tanh2 𝜇𝜔
2 )

]

= 1
√𝑝

𝑝 + 1
2

[1 +
(𝑝 − 1)(1 + tanh2 𝜇𝜔

2 )
(𝑝 + 1)(1 − tanh2 𝜇𝜔

2 )
]

= 1
√𝑝

𝑝 + 1
2

{{
{
{{

1 + 𝑝 − 1
𝑝 + 1

[
[
[(

1 − tanh2 𝜇𝜔
2

1 + tanh2 𝜇𝜔
2

)
2

]
]
]

1/2

}}
}
}}

.
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3.3. Computing the derivatives d𝜉, d2
𝜉 3. Results and discussion

To simplify the innermost term, we have

(
((
(1 − tanh2 𝜇𝜔

2
1 + tanh2 𝜇𝜔

2 )
))
)

2

=
1 − 2 tanh2 𝜇𝜔

2
+ tanh4 𝜇𝜔

2
(1 + tanh2 𝜇𝜔

2
)

2

=
1 + 2 tanh2 𝜇𝜔

2
+ tanh4 𝜇𝜔

2
− 4 tanh2 𝜇𝜔

2
(1 + tanh2 𝜇𝜔

2
)

2
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3.3. Computing the derivatives d𝜉, d2
𝜉 3. Results and discussion

=
(1 + tanh2 𝜇𝜔

2
)

2
− 4 tanh2 𝜇𝜔

2
(1 + tanh2 𝜇𝜔

2
)

2

= 1 −
4 tanh2 𝜇𝜔

2
(1 + tanh2 𝜇𝜔

2
)

2

= 1 − tanh2 𝜇𝜔

= (
2√𝑝
𝑝 + 1

)
2

[
[
[(𝑝 + 1

2√𝑝
)

2

− (𝑝 + 1
2√𝑝

)
2

tanh2 𝜇𝜔
]
]
]
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3.3. Computing the derivatives d𝜉, d2
𝜉 3. Results and discussion

= 1
𝑞2
𝑝
(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉).

With 𝑟𝑝 ≡ 𝑝−1
2√𝑝 = 𝑝−1

𝑝+1𝑞𝑝, we obtained

d𝜉𝜔 = 𝑞𝑝[1 + 𝑝 − 1
𝑝 + 1

𝑞𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
−1/2

]

= 𝑞𝑝[1 + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
−1/2

].

Finally, the resulting expressions for the first and second derivatives
were
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3.3. Computing the derivatives d𝜉, d2
𝜉 3. Results and discussion

d𝜉 = d𝜉𝜔 ⋅ d𝜔𝑌𝑝 ⋅ 𝑑𝑌𝑝

= 𝑞𝑝[1 + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
−1/2

] 𝜇
𝑞𝑝

(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)d𝑌𝑝

= 𝜇[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]d𝑌𝑝

and

d2
𝜉 = d𝜉{𝜇[(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉) + 𝑟𝑝(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉)

1/2
]d𝑌𝑝

}

= 𝜇[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]
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3.3. Computing the derivatives d𝜉, d2
𝜉 3. Results and discussion

d𝑌𝑝
{𝜇[(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉) + 𝑟𝑝(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉)

1/2
]d𝑌𝑝

}

= 𝜇[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]

{𝜇[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]d2
𝑌𝑝

+𝜇[(0 − 2𝑌𝑝,𝜉) + 𝑟𝑝
1
2
(0 − 2𝑌𝑝,𝜉)(𝑞2

𝑝 − 𝑌 2
𝑝,𝜉)

−1/2
]d𝑌𝑝

}

= 𝜇2[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]
2
d2

𝑌𝑝
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3.3. Computing the derivatives d𝜉, d2
𝜉 3. Results and discussion

+𝜇2[(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉) + 𝑟𝑝(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
1/2

]

[−2𝑌𝑝,𝜉 − 𝑟𝑝𝑌𝑝,𝜉(𝑞2
𝑝 − 𝑌 2

𝑝,𝜉)
−1/2

]d𝑌𝑝
.

• This computation provides an improvement in conciseness over
previous the operational rules for how derivatives of 𝑢(𝑥, 𝑡),
expressed as a series in 𝑌𝑝, transform. It is also an improvement in
conciseness compared to previous work [13]. The complexity of these
derivatives, particularly due to (𝑞2

𝑝 − 𝑌 2
𝑝 )

1
2 , highlights the algebraic

intricacy of the generalized method. This explains the necessity of
introducing a forcing function 𝐹(𝑌𝑝) when 𝑝 ≠ 1
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3.4. Solutions via gen tanh method 3. Results and discussion
Terms involving non-integer powers of 𝑌𝑝, specifically those with
(𝑞2

𝑝 − 𝑌 2
𝑝 )±1

2 , emerged. These terms cannot be balanced by integer
powers of 𝑌𝑝 alone. To address this, we introduce a forcing function

𝐹(𝑌 ) = 2𝑎2𝜇2𝑞2𝑟𝑌 2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 + 𝑎1𝜇2𝑟𝑌 3

𝑝 (𝑞2
𝑝 − 𝑌 2

𝑝 )−1/2

−2𝑎2𝜇2𝑟𝑌 4
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 − 4𝑎2𝜇2𝑞2𝑟(𝑞2

𝑝 − 𝑌 2
𝑝 )1/2

+2𝑎1𝜇2𝑟𝑌𝑝(𝑞2
𝑝 − 𝑌 2

𝑝 )1/2 + 𝑎1𝜇2𝑞2𝑟𝑌 2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2

= [2𝑎2𝜇2𝑞2𝑟𝑌 2
𝑝 + 𝑎1𝜇2𝑟𝑌 3

𝑝 − 2𝑎2𝜇2𝑟𝑌 4
𝑝 ](𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2

+[−4𝑎2𝜇2𝑞2𝑟 + 2𝑎1𝜇2𝑟𝑌𝑝 + 𝑎1𝜇2𝑞2𝑟𝑌 2
𝑝 ](𝑞2

𝑝 − 𝑌 2
𝑝 )1/2

Ralph Torres Novel exact solutions for forced Boussinesq equation via extended generalized tanh-function method 2025-05-24 42 / 92



3.4. Solutions via gen tanh method 3. Results and discussion
which we note can be further simplified. By equating the original
nonlinear ode, and consequently the nonlinear pde, to this forcing
function, we obtain a forced version of the Boussinesq equation

(𝑐2 − 1)𝑢 − 3𝑢2 − d2
𝜉𝑢 = 𝐹(𝑌 )

⟹ 𝜕2
𝑡 𝑢 − 𝜕2

𝑥𝑢 − 𝜕2
𝑥(3𝑢2) − 𝜕4

𝑥𝑢 = 𝐹(𝑌 ).

This modification allowed us to eliminate terms with non-integral
powers of 𝑌 . Importantly, the original, unforced Boussinesq equation is
recovered by setting 𝑝 = 1, which makes 𝑟𝑝 = 0 therefore 𝐹(𝑌𝑝) = 0.

Ralph Torres Novel exact solutions for forced Boussinesq equation via extended generalized tanh-function method 2025-05-24 43 / 92



3.4. Solutions via gen tanh method 3. Results and discussion
Solutions to the pde, when 𝑐2 > 1
• 𝑦0 gives trivial solutions
• 𝑦1 and 𝑦2 provide soliton solutions

𝑢1(𝑥, 𝑡, 𝑝)gen = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(1 − 𝑐2) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tanh(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

1 + 𝑝 tanh2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

]
]]
]

2
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3.4. Solutions via gen tanh method 3. Results and discussion

𝑢2(𝑥, 𝑡, 𝑝)gen = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(𝑐2 − 1) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tanh(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))

1 + 𝑝 tanh2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))
]
]]
]

2

.

Ralph Torres Novel exact solutions for forced Boussinesq equation via extended generalized tanh-function method 2025-05-24 45 / 92



3.4. Solutions via gen tanh method 3. Results and discussion
In the opposite regime where 𝑐2 < 1
• 𝑦1 and 𝑦2 yield the plane periodic solutions

𝑢3(𝑥, 𝑡, 𝑝)gen = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(𝑐2 − 1) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tan(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))

1 − 𝑝 tan2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))
]
]]
]

2
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3.4. Solutions via gen tanh method 3. Results and discussion

𝑢4(𝑥, 𝑡, 𝑝)gen = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(1 − 𝑐2) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tan(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

1 − 𝑝 tan2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

]
]]
]

2
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3.4. Solutions via gen tanh method 3. Results and discussion
Quick verification: setting 𝑝 = 1 in these generalized solutions produces
the unforced particular solutions obtained via the standard tanh method

𝑢1(𝑥, 𝑡, 𝑝 = 1)gen = 𝑐2 − 1
2

+ 2(1 − 𝑐2)
[
[
[ tanh(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

1 + tanh2(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡))]

]
]

2

= 𝑐2 − 1
2

[1 − tanh2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

sech2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))
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3.4. Solutions via gen tanh method 3. Results and discussion

= 𝑢1(𝑥, 𝑡)ext std = 𝑢1(𝑥, 𝑡)std

𝑢2(𝑥, 𝑡, 𝑝 = 1)gen = −𝑐2 − 1
6

+ 2(𝑐2 − 1)
[
[
[ tanh(

√
1−𝑐2

4 (𝑥 − 𝑐𝑡))

1 + tanh2(
√

1−𝑐2

4 (𝑥 − 𝑐𝑡))]
]
]

2

= −𝑐2 − 1
6

[1 − 3 tanh2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑢2(𝑥, 𝑡)ext std = 𝑢2(𝑥, 𝑡)std
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3.4. Solutions via gen tanh method 3. Results and discussion

𝑢3(𝑥, 𝑡, 𝑝 = 1)gen = 𝑐2 − 1
2

+ 2(𝑐2 − 1)
[
[
[ tan(

√
1−𝑐2

4 (𝑥 − 𝑐𝑡))

1 − tan2(
√

1−𝑐2

4 (𝑥 − 𝑐𝑡))]
]
]

2

= 𝑐2 − 1
2

[1 + tan2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

sec2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))

= 𝑢7(𝑥, 𝑡)ext std = 𝑢3(𝑥, 𝑡)std
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3.4. Solutions via gen tanh method 3. Results and discussion

𝑢4(𝑥, 𝑡, 𝑝 = 1)gen = −𝑐2 − 1
6

+ 2(1 − 𝑐2)
[
[
[ tan(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

1 − tan2(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡))]

]
]

2

= −𝑐2 − 1
6

[1 + 3 tan2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= 𝑢8(𝑥, 𝑡)ext std = 𝑢4(𝑥, 𝑡)std
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3.4. Solutions via gen tanh method 3. Results and discussion

(a): 𝑢1,gen : 𝑐 = 2, |𝑥, 𝑡| ≤ 4 (b): 𝑢2,gen : 𝑐 = 1
2 , |𝑥, 𝑡| ≤ 4 (c): 𝑢1,gen : 𝑐 = 2, |𝑥| ≤ 10 (d): 𝑢2,gen : 𝑐 = 1

2 , |𝑥| ≤ 10

Figure 5:  Plots of the soliton solutions to the classical Boussinesq equation via generalized tanh method, with
𝑡 = 0, 2, 4.

Ralph Torres Novel exact solutions for forced Boussinesq equation via extended generalized tanh-function method 2025-05-24 52 / 92



3.4. Solutions via gen tanh method 3. Results and discussion

(a): 𝑢3,gen : 𝑐 = 2, |𝑥, 𝑡| ≤ 4 (b): 𝑢4,gen : 𝑐 = 1
2 , |𝑥, 𝑡| ≤ 4 (c): 𝑢3,gen : 𝑐 = 2, |𝑥| ≤ 10 (d): 𝑢4,gen : 𝑐 = 1

2 , |𝑥| ≤ 10

Figure 6:  Plots of the plane periodic solutions to the classical Boussinesq equation via generalized tanh method,
with 𝑡 = 0, 2, 4.
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3.4. Solutions via gen tanh method 3. Results and discussion
Findings

• The generalized tanh method, for 𝑝 ≠ 1, yields solutions to the forced
Boussinesq equation due to the emergence of terms involving non-
integer powers of 𝑌𝑝, represented by the forcing function 𝐹(𝑌𝑝).
Setting 𝑝 = 1 eliminates 𝐹(𝑌𝑝), resulting in solutions to the original,
unforced Boussinesq equation.

• This approach introduces a valuable parameter 𝑝, which provides a
continuous deformation of the standard solutions while revealing
solutions to related forced systems
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3.5. Solutions via ext gen tanh method 3. Results and discussion
The terms involving non-integer powers of 𝑌𝑝 already separated into
the forcing function

𝐹(𝑌 ) = −2𝑏2𝜇2𝑞2𝑟𝑌 −2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 − 𝑏1𝜇2𝑞2𝑟𝑌 −1

𝑝 (𝑞2
𝑝 − 𝑌 2

𝑝 )−1/2

+2𝑏2𝜇2𝑟(𝑞2
𝑝 − 𝑌 2

𝑝 )−1/2 + (𝑎1𝜇2𝑞2𝑟 + 𝑏1𝜇2𝑟)𝑌𝑝(𝑞2
𝑝 − 𝑌 2

𝑝 )−1/2

+2𝑎2𝜇2𝑞2𝑟𝑌 2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 − 𝑎1𝜇2𝑟𝑌 3

𝑝 (𝑞2
𝑝 − 𝑌 2

𝑝 )−1/2

−2𝑎2𝜇2𝑟𝑌 4
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2 − 12𝑏2𝜇2𝑞2𝑟𝑌 −4

𝑝 (𝑞2
𝑝 − 𝑌 2

𝑝 )1/2

−4𝑏1𝜇2𝑞2𝑟𝑌 −3
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 + 8𝑏2𝜇2𝑟𝑌 −2

𝑝 (𝑞2
𝑝 − 𝑌 2

𝑝 )1/2

+2𝑏1𝜇2𝑟𝑌 −1
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2 + (−4𝑎2𝜇2𝑞2𝑟 − 𝑏1𝜇2𝑞2𝑟)(𝑞2

𝑝 − 𝑌 2
𝑝 )1/2
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3.5. Solutions via ext gen tanh method 3. Results and discussion

+2𝑎1𝜇2𝑟𝑌𝑝(𝑞2
𝑝 − 𝑌 2

𝑝 )1/2 + 8𝑎2𝜇2𝑟𝑌 2
𝑝 (𝑞2

𝑝 − 𝑌 2
𝑝 )1/2

= [−2𝑏2𝜇2𝑞2𝑟𝑌 −2
𝑝 − 𝑏1𝜇2𝑞2𝑟𝑌 −1

𝑝 + 2𝑏2𝜇2𝑟 + (𝑎1𝜇2𝑞2𝑟 + 𝑏1𝜇2𝑟)𝑌𝑝

+2𝑎2𝜇2𝑞2𝑟𝑌 2
𝑝 − 𝑎1𝜇2𝑟𝑌 3

𝑝 − 2𝑎2𝜇2𝑟𝑌 4
𝑝 ](𝑞2

𝑝 − 𝑌 2
𝑝 )−1/2

+[−12𝑏2𝜇2𝑞2𝑟𝑌 −4
𝑝 − 4𝑏1𝜇2𝑞2𝑟𝑌 −3

𝑝 + 8𝑏2𝜇2𝑟𝑌 −2
𝑝 + 2𝑏1𝜇2𝑟𝑌 −1

𝑝

+(−4𝑎2𝜇2𝑞2𝑟 − 𝑏1𝜇2𝑞2𝑟) + 2𝑎1𝜇2𝑟𝑌𝑝 + 8𝑎2𝜇2𝑟𝑌 2
𝑝 ]

(𝑞2
𝑝 − 𝑌 2

𝑝 )1/2.

• By equating our nonlinear ode to 𝐹(𝑌𝑝), the equation becomes
forced. But by setting 𝑝 = 1, we recover the unforced system
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3.5. Solutions via ext gen tanh method 3. Results and discussion
Solutions to the pde, when 𝑐2 > 1
• 𝑦0 provides trivial solutions
• 𝑦1 and 𝑦2 give soliton solutions

𝑢1(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(1 − 𝑐2) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tanh(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

1 + 𝑝 tanh2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

]
]]
]

2

Ralph Torres Novel exact solutions for forced Boussinesq equation via extended generalized tanh-function method 2025-05-24 57 / 92



3.5. Solutions via ext gen tanh method 3. Results and discussion

𝑢2(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(𝑐2 − 1) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tanh(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))

1 + 𝑝 tanh2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))
]
]]
]

2
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3.5. Solutions via ext gen tanh method 3. Results and discussion
• 𝑦3 and 𝑦4 give the non-soliton traveling wave solutions

𝑢3(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(1 − 𝑐2) 𝑝2 + 1
4𝑝√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[1 + 𝑝 tanh2(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

tanh(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

]
]]
]

2
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3.5. Solutions via ext gen tanh method 3. Results and discussion

𝑢4(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(𝑐2 − 1) 𝑝2 + 1
4𝑝√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[1 + 𝑝 tanh2(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))

tanh(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))
]
]]
]

2
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3.5. Solutions via ext gen tanh method 3. Results and discussion
In the opposite regime where 𝑐2 < 1
• 𝑦1, 𝑦2, 𝑦3 and 𝑦4 give plane periodic solutions

𝑢5(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(𝑐2 − 1) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tan(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))

1 − 𝑝 tan2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))
]
]]
]

2
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3.5. Solutions via ext gen tanh method 3. Results and discussion

𝑢6(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(1 − 𝑐2) 2𝑝(𝑝 + 1)2

√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[ tan(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

1 − 𝑝 tan2(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

]
]]
]

2

𝑢7(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 + 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)
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3.5. Solutions via ext gen tanh method 3. Results and discussion

+(𝑐2 − 1) 𝑝2 + 1
4𝑝√(3𝑝2 + 1)(𝑝2 + 3)

[
[[
[1 − 𝑝 tan2(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))

tan(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
1−𝑐2

2 (𝑥 − 𝑐𝑡))
]
]]
]

2

𝑢8(𝑥, 𝑡, 𝑝)ext gen = 𝑐2 − 1
6

(1 − 3𝑝2 + 2𝑝 + 3
√(3𝑝2 + 1)(𝑝2 + 3)

)

+(1 − 𝑐2) 𝑝2 + 1
4𝑝√(3𝑝2 + 1)(𝑝2 + 3)
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3.5. Solutions via ext gen tanh method 3. Results and discussion

[
[[
[1 − 𝑝 tan2(

√𝑝
4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

tan(
√𝑝

4√(3𝑝2+1)(𝑝2+3)

√
𝑐2−1
2 (𝑥 − 𝑐𝑡))

]
]]
]

2

Quick check: setting 𝑝 = 1. This should reduce the forced generalized
extended solutions to the unforced extended standard solutions

𝑢1(𝑥, 𝑡, 𝑝 = 1)ext gen = 𝑐2 − 1
2

+ 2(1 − 𝑐2)
[
[
[ tanh(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

1 + tanh2(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡))]

]
]

2
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3.5. Solutions via ext gen tanh method 3. Results and discussion

= 𝑐2 − 1
2

[1 − tanh2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

sech2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))

= 𝑢1(𝑥, 𝑡)gen = 𝑢1(𝑥, 𝑡)ext std = 𝑢1(𝑥, 𝑡)std

𝑢2(𝑥, 𝑡, 𝑝 = 1)ext gen = −𝑐2 − 1
6

+ 2(𝑐2 − 1)
[
[
[ tanh(

√
1−𝑐2

4 (𝑥 − 𝑐𝑡))

1 + tanh2(
√

1−𝑐2

4 (𝑥 − 𝑐𝑡))]
]
]

2
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3.5. Solutions via ext gen tanh method 3. Results and discussion

= −𝑐2 − 1
6

[1 − 3 tanh2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑢2(𝑥, 𝑡)gen = 𝑢2(𝑥, 𝑡)ext std = 𝑢2(𝑥, 𝑡)std

𝑢3(𝑥, 𝑡, 𝑝 = 1)ext gen = 𝑐2 − 1
2

+ 1 − 𝑐2

8
[
[
[1 + tanh2(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

tanh(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡)) ]

]
]

2

= 𝑐2 − 1
2

[1 − coth2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]
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3.5. Solutions via ext gen tanh method 3. Results and discussion

= −𝑐2 − 1
2

csch2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))

= 𝑢3(𝑥, 𝑡)ext std

𝑢4(𝑥, 𝑡, 𝑝 = 1)ext gen = −𝑐2 − 1
6

+ 𝑐2 − 1
8

[
[
[1 + tanh2(

√
1−𝑐2

4 (𝑥 − 𝑐𝑡))

tanh(
√

1−𝑐2

4 (𝑥 − 𝑐𝑡)) ]
]
]

2

= −𝑐2 − 1
6

[1 − 3 coth2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑢4(𝑥, 𝑡)ext std
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3.5. Solutions via ext gen tanh method 3. Results and discussion

𝑢5(𝑥, 𝑡, 𝑝 = 1)ext gen = 𝑐2 − 1
2

+ 2(𝑐2 − 1)
[
[
[ tan(

√
1−𝑐2

4 (𝑥 − 𝑐𝑡))

1 − tan2(
√

1−𝑐2

4 (𝑥 − 𝑐𝑡))]
]
]

2

= 𝑐2 − 1
2

[1 + tan2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

sec2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))

= 𝑢3(𝑥, 𝑡)gen = 𝑢7(𝑥, 𝑡)ext std = 𝑢3(𝑥, 𝑡)std
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3.5. Solutions via ext gen tanh method 3. Results and discussion

𝑢6(𝑥, 𝑡, 𝑝 = 1)ext gen = −𝑐2 − 1
6

+ 2(1 − 𝑐2)
[
[
[ tan(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

1 − tan2(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡))]

]
]

2

= −𝑐2 − 1
6

[1 + 3 tan2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= 𝑢4(𝑥, 𝑡)gen = 𝑢8(𝑥, 𝑡)ext std = 𝑢4(𝑥, 𝑡)std

𝑢7(𝑥, 𝑡, 𝑝 = 1)ext gen = 𝑐2 − 1
2

+ 𝑐2 − 1
8

[
[
[1 − tan2(

√
1−𝑐2

4 (𝑥 − 𝑐𝑡))

tan(
√

1−𝑐2

4 (𝑥 − 𝑐𝑡)) ]
]
]

2
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3.5. Solutions via ext gen tanh method 3. Results and discussion

= 𝑐2 − 1
2

[1 + cot2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))]

= 𝑐2 − 1
2

csc2(
√

1 − 𝑐2

2
(𝑥 − 𝑐𝑡))

= 𝑢9(𝑥, 𝑡)ext std

𝑢8(𝑥, 𝑡, 𝑝 = 1)ext gen = −𝑐2 − 1
6

+ 1 − 𝑐2

8
[
[
[1 − tan2(

√
𝑐2−1
4 (𝑥 − 𝑐𝑡))

tan(
√

𝑐2−1
4 (𝑥 − 𝑐𝑡)) ]

]
]

2
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3.5. Solutions via ext gen tanh method 3. Results and discussion

= −𝑐2 − 1
6

[1 + 3 cot2(
√

𝑐2 − 1
2

(𝑥 − 𝑐𝑡))]

= 𝑢10(𝑥, 𝑡)ext std.

Ralph Torres Novel exact solutions for forced Boussinesq equation via extended generalized tanh-function method 2025-05-24 71 / 92



3.5. Solutions via ext gen tanh method 3. Results and discussion

(a): 𝑢3,ext gen : 𝑐 = 2, |𝑥, 𝑡| ≤ 4 (b): 𝑢4,ext gen : 𝑐 = 1
2 , |𝑥, 𝑡| ≤ 4 (c): 𝑢3,ext gen : 𝑐 = 2, |𝑥| ≤ 10 (d): 𝑢4,ext gen : 𝑐 = 1

2 , |𝑥| ≤ 10

Figure 7:  Plots of the additional non-soliton traveling wave solutions to the classical Boussinesq equation via
extended generalized tanh method, with 𝑡 = 0, 2, 4. The other solutions are found in Figure 5 and Figure 6.
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3.5. Solutions via ext gen tanh method 3. Results and discussion

(a): 𝑢7,ext gen : 𝑐 = 2, |𝑥, 𝑡| ≤ 4 (b): 𝑢8,ext gen : 𝑐 = 1
2 , |𝑥, 𝑡| ≤ 4 (c): 𝑢7,ext gen : 𝑐 = 2, |𝑥| ≤ 10 (d): 𝑢8,ext gen : 𝑐 = 1

2 , |𝑥| ≤ 10

Figure 8:  Plots of the additional plane periodic solutions to the classical Boussinesq equation via extended
generalized tanh method, with 𝑡 = 0, 2, 4. The other solutions are found in Figure 5 and Figure 6.
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3.5. Solutions via ext gen tanh method 3. Results and discussion
Findings
• Extended generalized method identified 14 solution sets, yielding 8

unique families after removing trivial and duplicate solutions—
comprising 2 solitons, 2 non-soliton traveling waves, and 4 plane
periodic solutions for forced Boussinesq equation

• Setting 𝑝 = 1 correctly reduces solutions to those from extended
standard tanh method, confirming that extended generalized method
encompasses previous approaches while providing additional tunable
families, establishing validity of ansatz-inspired function 𝑌𝑝
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3.6. Playing with the parameter 𝑝 3. Results and discussion
We use 𝑢1,ext gen, 𝑢3,ext gen, and 𝑢6,ext gen, with 𝑐 = 2, as representative
examples of soliton, non-soliton traveling wave, and plane periodic
solutions, respectively. We highlight the control we have over the
solutions by using 𝑝 as our tunable parameter:

(a): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 1.0 (b): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 0.6 (c): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 0.2 (d): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 4

Figure 9:  Spacetime evolutions of the soliton solution 𝑢1,ext gen for 𝑐 = 2 and 0 ≤ 𝑝 ≤ 1.
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3.6. Playing with the parameter 𝑝 3. Results and discussion

(a): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 1.0 (b): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 0.6 (c): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 0.2 (d): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 4

Figure 10:  Spacetime evolutions of the non-soliton traveling wave solution 𝑢3,ext gen for 𝑐 = 2 and 0 ≤ 𝑝 ≤ 1.

(a): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 = 1.0 (b): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 = 0.6 (c): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 = 0.2 (d): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 4

Figure 11:  Spacetime evolutions of the plane periodic solution 𝑢6,ext gen for 𝑐 = 2 and 0 ≤ 𝑝 ≤ 1.
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3.6. Playing with the parameter 𝑝 3. Results and discussion

(a): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 1.0 (b): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 1.2 (c): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 1.6 (d): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 4

Figure 12:  Spacetime evolutions of the soliton solution 𝑢1,ext gen for 𝑐 = 2 and 𝑝 > 1.

(a): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 1.0 (b): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 1.2 (c): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 1.6 (d): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 4

Figure 13:  Spacetime evolutions of the non-soliton traveling wave solution 𝑢3,ext gen for 𝑐 = 2 and 𝑝 > 1.

Ralph Torres Novel exact solutions for forced Boussinesq equation via extended generalized tanh-function method 2025-05-24 77 / 92



3.6. Playing with the parameter 𝑝 3. Results and discussion

(a): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 = 1.0 (b): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 = 1.2 (c): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 = 1.6 (d): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 4

Figure 14:  Spacetime evolutions of the plane periodic solution 𝑢6,ext gen for 𝑐 = 2 and 𝑝 > 1.

(a): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = 0.1 (b): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = −0.2 (c): 𝑢1 : |𝑥, 𝑡| ≤ 4, 𝑝 = −0.6 (d): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢1 : |𝑥| ≤ 10, 𝑡 = 4

Figure 15:  Spacetime evolutions of the soliton solution 𝑢1,ext gen for 𝑐 = 2 and 𝑝 < 1.
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3.6. Playing with the parameter 𝑝 3. Results and discussion

(a): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = 0.1 (b): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = −0.2 (c): 𝑢3 : |𝑥, 𝑡| ≤ 15, 𝑝 = −0.6 (d): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢3 : |𝑥| ≤ 10, 𝑡 = 4

Figure 16:  Spacetime evolutions of the non-soliton traveling wave solution 𝑢3,ext gen for 𝑐 = 2 and 𝑝 < 1.

(a): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 = 0.1 (b): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 =
−0.2

(c): 𝑢6 : |𝑥, 𝑡| ≤ 1000, 𝑝 =
−0.6

(d): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 0 (e): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 2 (f): 𝑢6 : |𝑥| ≤ 10, 𝑡 = 4

Figure 17:  Spacetime evolutions of the plane periodic solution 𝑢6,ext gen for 𝑐 = 2 and 𝑝 < 1.
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3.6. Playing with the parameter 𝑝 3. Results and discussion
For 0 ≤ 𝑝 ≤ 1
• As 𝑝 → 0, soliton 𝑢1 widens and amplitude decreases, indicating

energy delocalization and transition towards plane-wave-like state
• Traveling wave 𝑢3 widens with decreased depth, making localized

features less pronounced and potentially tending towards constant
solution

• Smaller 𝑝 values suggest instability or energy dispersion, with forcing
effects becoming dominant

• Solutions lose distinct characteristics and approach dissipated states
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3.6. Playing with the parameter 𝑝 3. Results and discussion
For 𝑝 > 1
• Soliton 𝑢1 becomes narrower with increased amplitude, signifying

energy concentration and sharply peaked waves
• Non-soliton wave 𝑢3 develops deeper, narrower valleys with more

pronounced localized features
• Plane periodic wave 𝑢6 shows increased oscillation amplitude and

more pronounced periodic variations
• Corresponds to stronger nonlinearity or different dispersive

properties controlled by 𝑝 via forcing term
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3.6. Playing with the parameter 𝑝 3. Results and discussion
For 𝑝 < 0
• Classical soliton loses single-hump shape, becoming oscillatory and

no longer fitting classical soliton definition
• Non-soliton traveling waves transform into oscillatory patterns with

complex behavior
• Plane periodic solutions remain periodic but with significantly altered

waveforms, often featuring sharper characteristics and additional
oscillations

• Solutions fundamentally different from 𝑝 ≥ 0 cases, potentially
describing entirely different physical phenomena or mathematical
structures
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4. Conclusions and
recommendations



4.1. Conclusions 4. Conclusions and recommendations
Key contributions include

• Methodological advancement. Developed generalized tanh-
function method with tunable parameter 𝑝 and extended it with
negative powers in series solution

• New solution families. Derived 8 unique families of exact solutions
including tunable solitons, non-soliton traveling waves, and plane
periodic solutions

• Forcing function insight. Solutions satisfy forced Boussinesq
equation when 𝑝 ≠ 1, with forcing term 𝐹(𝑌𝑝) dependent on
parameter 𝑝
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4.1. Conclusions 4. Conclusions and recommendations
• Parameter control mechanism. Parameter 𝑝 provides powerful

control over solution characteristics including amplitude, width,
wavelength, and fundamental form

• Expanded solution space. Significantly broadened known analytical
solution space for Boussinesq-type equations
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4.1. Conclusions 4. Conclusions and recommendations
Observed effects of parameter 𝑝

• 0 ≤ 𝑝 ≤ 1. Decreasing 𝑝 produces wider, flatter localized waves and
structurally modulated periodic waves

• 𝑝 > 1. Solutions become narrower and more sharply peaked
• 𝑝 < 0. Fundamental transformation from hyperbolic to trigonometric

character, creating diverse oscillatory patterns
• 𝑝 = 1. Forcing term vanishes, retrieving known standard Boussinesq

equation solutions
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4.2. Recommendations 4. Conclusions and recommendations
For immediate applications

• Broader equation coverage. Apply method to KdV-type equations,
nonlinear Schrödinger equations, and higher-dimensional systems

• Parameter space exploration. Investigate complex values of 𝑝 and
their mathematical properties

• Physical realizability. Study stability and physical meaning of
solutions for 𝑝 < 0 or complex 𝑝
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4.2. Recommendations 4. Conclusions and recommendations
For advanced investigations

• Analyze forcing function. Find conditions where 𝐹(𝑌𝑝) vanishes
beyond 𝑝 = 1 and explore physical interpretation of forcing terms

• Generalize using Riccati equation. Develop unified framework
encompassing various tanh-based methods as special cases

• Approximate solutions. Leverage tunable parameter for
constructing optimized approximations in intractable cases
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