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1 Introduction

Among the many nonlinear partial differential equations, one of most physically significant and mathe-
matically interesting is the Boussinesq equation given in dimensionless form by

O*u — 20*u — ad*u® — BOtu =0, (1.1)

which describes long waves in shallow water (see also [3]). While it found its primary application
in hydrodynamics and coastal engineering, such as in modeling wave interactions in surf zones , in
nearshore zones @, in swash zones [7], of irregular wave trains @ﬂ, with uneven beds , with porous
and reef-like beds , inside harbors [7], on bounded grids , and on unstructured mesh as
in Fig.[] this equation has proven surprisingly versatile. It appears in wide ranging physical systems such
as nonlinear magnetosound waves in plasmas , observed thin turbulent layers in the atmosphere
, nonlinear waves perturbations in acoustic-like regimes , electromagnetic waves in nonlinear
dielectrics , elastic waves in antiferromagnets , and vibrations in nonlinear strings .
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Figure 1: Unstructured triangular meshes of the harbor geometry and simulated model of the

the waves on the free surface at time ¢ .

This equation derives from a family of nonlinear equations characterized by a second-order time derivative
92w and the general form
O*u — 9%u+ P(u) =0, (1.2)

where v = u(z,t) is a differentiable function of space = and time ¢, and P(u) is a nonlinear term. Unlike
the unidirectional Korteweg-de Vries (KdV) and KdV-type equations involving d,u, this equation exhibits
bidirectional wave propagation, traveling in both left and right directions . However, despite this dis-
tinction, this equation reduces to the KdV equation by neglecting the interaction of the opposing waves
and considering only one direction . Moreover, the Boussinesq equation itself can be obtained from
the Kadomtsev-Petviashvili (KP) equation through dimensional reduction in a moving frame [27]. Inter-
estingly, the relationship reverses in near unidirectional propagation within the original dimensions, with
the Boussinesq equation reducing to the KP equation . Furthermore, for complex-valued amplitudes
in the slow modulation regime, the Boussinesq equation approximates the nonlinear Schrédinger (NLS)



equation. Notably, the rational solutions of the former bear resemblance to the rogue wave solutions of
the latter [29]. These highly unpredictable waves, characterized by extreme localized amplitude, have
garnered significant interest recently (see [29H31]). While possessing distinct physical applications, all of
the aforementioned equations are interconnected within a broader family of partial differential equations
describing solitary waves, as illustrated in Fig. 2] Thusly, an investigation on any of the equations could
indirectly contribute to advancements in related equation families.
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Figure 2: Conceptual map of the Boussinesq equations

Moreover, this equation incorporates two competing effects: nonlinearity represented by P(u) = —ad?u?—
BO4u which steepens the wave, and linear dispersion embedded in dispersion relation w which spreads the
wave [2|. Unlike the classical shallow-water equations derived from the Navier-Stokes equations, Boussi-
nesq equation accounts for frequency dispersion enabling it to model a wider range of wave phenomena,
including those with smaller wavelengths [32]. The balance between nonlinearity and dispersion gives
rise to soliton solutions. These are particle-like waves characterized by their single-humped profile, finite
amplitude, and constant shape and speed [33]. While solitons are generally stable, certain anomalous
behaviors such as the formation of singularities in a finite time and decay under perturbations have been
observed in soliton solutions specific to the Boussinesq equation [27] 34} |35] (see also [36]).

Mathematically, can admit any coefficients «, 3,¢c € R with a > 0, and should yield equivalent
equations after rescaling and variable translation, as long as the sign of 3 is taken into account (otherwise,
the sign does not matter if the coefficients are complex) [37]. With 8 = 1, the equation is ill-posed which
means that the initial value problem cannot be solved for arbitrary data [33]. Conversely, 5 = —1 leads
to a well-posed equation [38]. Despite the posedness, both classical Boussinesq equations admit inverse
scattering formalism and are completely integrable |24} [38], making Boussinesq one of the few completely
integrable equations. The former reduces the solutions of the equation to a linear integral equation and
often implies the latter [37]. The latter entails an infinite number of independent conversation laws and
symmetries, along with the existence of multi-solition solutions, among other notable properties [39).
Note that another family of equations known as improved Boussinesq equations is also being thoroughly
studied, which includes a mixed fourth-order derivative 9792u instead of the purely spatial 92 term found
in the classical family. This modification improves the dispersive properties [33] broadening Boussinesq
equations’ applicability to other wave phenomena. This family is well-posed [40} |41] albeit not completely
integrable [42| 43| but will nonetheless be considered in this paper.

A variety of methods have been developed to solve the Boussinesq equation and other solitary wave-
describing families of nonlinear partial differential equations. These include powerful techniques that
directly deal with the partial differential equations such as inverse scattering transform [44], Béacklund
transform [45], and Hirota’s bilinear method [46H48]. However, simpler methods such as direct integration



[49], homogeneous balance method [50], sine-Gordon expansion [51} [52], and tanh-function method (53,
54] have also proven effective in obtaining exact and analytic solutions. These methods capitalize on
the straightforward nature of hyperbolic and exponential functions to model traveling waves, and of
trigonometric functions to represent periodic waves, which solitary wave-describing equations readily
accommodate. By adopting a traveling wave frame of reference, the partial differential equation is
transformed into an ordinary differential equation from which closed-form solutions in terms of these
transcendental functions are sought [25} [33].

Due to simplicity, the original tanh-based method has since been extended and modified in certain
directions to obtain more exact traveling wave solutions. This includes the coth extension [55, |56],
hyperbolic-function generalization [57} 58|, trigonometric [25||59] and exponential [60] reformulations, and
generalizations to Riccati equation expansion |61} [62] and projection [63-66]. The lattermost method can
obtain new families of exact solutions including non-traveling wave soliton-like ones among others.

In this paper, we formulate a generalization of the tanh-function method for solving a broad class of
nonlinear partial differential equations. We then propose a further extension of this generalization.
Finally, we implement both methods to obtain new tunable soliton, periodic, and other traveling wave
solutions for the classical and improved Boussinesq equations, high-order Boussinesq equations, and some
physically relevant variants.

This paper lays the groundwork for a robust and compact generalization of the tanh-function method.
While this method may not produce multiple-soliton solutions as some existing approaches do, it has
the potential to find other physically interesting and potentially unique solutions, including bright and
dark solitons, complex solitons, and non-traveling wave soliton-like solutions. The focus of this paper is
on developing this generalization of said method and applying it to the Boussinesq and Boussinesg-type
equations. It is not intended to improve the equations themselves, although the forcing functions we
derive could be considered an improvement. Furthermore, the equations reside in the (1 + 1)-dimension,
which is both sufficient for physical purposes and consistent with literature, rather than (2 4 1).

Future research could explore applying this generalization to other nonlinear systems, including those
with more sophisticated properties and even approximate solutions in cases where exact solutions are
elusive. Omne promising avenue involves either formulating a standard scheme to incorporate forcing
functions directly into the nonlinear equations or devising a strategy in the derivations to eliminate the
need for such functions. Additionally, formulating a more general method inspired by Riccati equation-
based methods, which would encompass tanh-based methods as a special case, is an interesting direction
for further investigation.

2 Methodology

In this section, we formulate our proposed generalization of the tanh-function method along with an
extension of this generalization with the help of a more general and encompassing ansatz We then dis-
cuss how to obtain a new set of tunable soliton, periodic, and other traveling wave solutions for forced
Boussinesq and Boussinesq-type equations.

2.1 Standard tanh method

We follow the standard tanh method for solving pdes introduced by Malfliet in [53} [54] which employs
the transformation

U(:L’,t) - U(f), §= ,U,(SU - Ct)a (21)

for arbitrary real constants ¢ and g which are usually wave speed and wave number, respectively, and
the introduction of the new function
Y (§) = tanh¢, (2.2)

which was specifically chosen due to a convenient property of the said function. That is, when differen-
tiated repeatedly, tanh assumes slight variants of itself and transforms to sech quite easily as in

deY =sech®¢ =1-Y? diY =-2Y +2Y? diy =-2+8Y>—-6Y" .. .. (2.3)



Here, we find a set of algebraic functions representing various orders of derivatives. This leads to the
simple yet powerful ansatz

M
U=SY)=> aY" (2.4)
k=0

where coefficients aj are real constants to be determined, and M is a positive integer extractable via
balancing terms and derivatives (elaborated below).

This method includes (1) transforming the pde into a nonlinear ode, (2) balancing the highest order
nonlinear term with the highest order derivative, (3) deriving and solving a nonlinear system of equations
for coefficients and parameters, and (4) substituting the solutions for these coeflicients and parameters
back into the nonlinear ode.

But since we introduce a new independent variable inspired by a novel ansatz first introduced in [67], we
expand upon the above methodology, perform a set of substitutions, and employ tricks where convenient,
all within this paper’s proposed modified tanh method procedure as illustrated in Fig. [3] We extend this
generalization, then apply both procedures to various Boussinesq and Boussinesqg-type equations.
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Figure 3: Procedural diagrams of the standard and proposed methods

2.2 Generalized tanh method
We formulate a modification of the tanh method based on the new introductory function as ansatz

Ve =Yp(ué) = (1+p) 0<p<lpeR. (2.5)

The key feature of this ansatz is the tunable parameter p. It could allow for solutions to be either adap-
tively tailored to the specific problem at hand or precisely fine-tuned to meet specific conditions.
Using the variable £ = x — ct, we transform any pde into an ode as in

P(u, Oy, Opu, Ou, 02u, Ofu,...) = 0 (2.6)
= Q(U,deU,d{U,d¢U,...) =0 '

together with their respective solutions u(x,t) and U(§). Assuming the integration constants vanish, we
iteratively integrate this ode until desired, say until

Q(U,deU,dgU, diUu,...) =0, (2.7)



as long as all terms retain derivatives. We then compute for the higher-order derivatives
de, dg,d, ... dy, (2.8)

where n represents the highest order of differentiation present in the integrated ode (2.7]). Note that this
computation is particularly cumbersome.

Next, we still assume that the use of the finite series expansion in (2.4]) as a solution to the ode such that
u(z,t) =U(&) = S(Y) is admissible under the tanh method. Substituting this series into the ode yields
a semblance of algebraic equation in powers of Y which follow the mapping

u— M, u?—=2M, ..., u"—nM, (2.9a)
ou—M+1, Pu—sM+2 ..., u— M+r. (2.9b)
We employ this to balance the highest order nonlinear term with the highest order derivative in the inte-

grated ode ([2.7)) and determine the balance constant M to use in (2.4]). We reject any non-positive integer
M and adjust in the integration step accordingly. If inconvenient, we apply the transformation

U(¢) = oM, (2.10)

then substitute it back and attempt to determine M again as long as M is a fraction or a negative integer
as suggested in [65].

Then, we substitute the necessary derivatives (2.8]) and the series (2.4]) with determined M into the inte-
grated ode (2.7), and group the terms according to their powers in Y. For terms with non-integral powers
of Y, we introduce different forcing functions F(Y') that make them vanish such that we have

QU deU, diU,d3U,...;Y) + F(Y) = 0. (2.11)

To be consistent for all values of Y, the coefficient expressions must each equate to zero. This results in a
nonlinear system of algebraic equations for the mathematical coefficients a,, for n > 0, n € Z and physical
coefficients such as the wave number p. We then solve this system by hand, and utilize a computer algebra
system such as the free and open-source SageMath for tedious calculations when needed.

Finally, we substitute the determined solutions for the coefficients and parameters back into the integrated
ode, apply restricting conditions where necessary, and obtain a set of tunable soliton and plane periodic
solutions.

2.3 Generalized extended tanh method

In the previous method, we only have algebraic terms in positive powers of Y in the finite series (2.4) to
restrict the solution space to tanh and sech-employing solutions. We remove this limitation to explore
additional set of solutions, particularly coth and csch-based solutions, by extending the series into

M M
SY)=> aY* +> bYF (2.12)
k=0 k=1

as inspired by an extension of the tanh method in [55, 56].

2.4 Boussinesq equations

After we formulate our proposed generalization of the tanh-function method along with an extension of
this generalization, we implement both methods to obtain new tunable solutions to the following forms of
the Boussinesq and Boussinesqg-type equations: classical and improved Boussinesq equations with § = +1
11, 2 [33]

O*u — 20*u — adu® — BOtu = 0, (2.13a)
02u — ?0%u — ad?u® — BO?O*u = 0, (2.13b)
generalized Boussinesq systems [42]
07 — c§02u — 02 (F(u) — BO2u + dpu) =0, (2.14a)
0} — 02 (u+ F(u) — BOju) + BOju =0, (2.14b)



high-order modified Boussinesq [65], 68|

02 + a0;0%u + BOMu + rd*u" =0 (2.15)

variant Boussinesq equations |61, [69]
Opu + Oyv + udyu + pataiu =0, (2.16)
O + Opuv + q02u = 0, (2.17)

dissipative Boussinesq equation [70]
h3
On + hOzu = Fai’u, (2.18a)
1 1
O + gOm + 01u = §§1h28§u + ihzataiu, (2.18b)
2 Loog o

Oru + g0ym = d205u + Eh 00 u. (2.18c¢)

the Boussinesg-type equation that describes vibration in magneto-electro-elastic circular rod [71]
2
v
Ofu — v302u — 02 (20u2 + m@fu) =0, (2.19)

and possibly others that are physically relevant to plasma physics and atmospheric science.

3 Expected results

We note that for the classical Boussinesq equation ([1.1)) with ¢ = 3, 8 = —1, there are two soliton and
two traveling wave solutions

21 1

ui(z,t) = ¢ 5 sech? (2\/ 2 —1(x— ct)) , > 1, (3.1a)
-1 5 (1

ug(x,t) = — 5 {1 — 3tanh (2\/1 —c2(x — ct))] , <1, (3.1b)

21 1

uz(z,t) = ¢ 5 esch? (2\/ 2 —1(z— ct)> , >, (3.1c)
-1 5 (1 9

ug(x,t) = — 5 1 — 3 coth 5\/1—02(9:—015) , ¢t <1, (3.1d)

with corresponding plane periodic solutions

21 1
us(z,t) = ¢ 5 sec? <2\/1 —2(x — ct)> , <1, (3.2a)

ug(z, ) = 70267 L [1 — 3tan? (;\/ﬁ(x - ct)ﬂ : A1, (3.2b)

2

u7(l‘7t) = ‘

! csc? (;\/1 —c2(x — ct)) , <1, (3.2¢)

2

21 1
ug(x,t) = ¢ G {1 — 3cot? <2 2 —1(x— ct))} ) > 1, (3.2d)

all of which are obtainable via an extension of the tanh method in [25]. Now, say, the other Boussinesq
and Boussinesg-type equations also have a certain set of solutions depending on the methods used.

In this paper, we shall obtain a new set of soliton, periodic, and other traveling wave solutions for the
forced variants of these Boussinesq and Boussinesq-type equations. Given the existence of these known
solutions obtained through other tanh and non-tanh-based methods, we expect our proposed generalized
extended tanh method will produce at least as many, if not more, solution families. Ideally, the new
solutions would exhibit similar or somewhat similar behavior to the ones presented above. That is, their
analytical behavior resembles the properties seen in Fig. [4 In other words, the new solutions should
at least be analytic if not traveling wave solutions, but ideally both. Furthermore, we anticipate that
for specific parameter values, the solutions obtained by our method reduce back to the standard tanh
method solutions.



(e) us:c=1, (f) ug : ¢ =2, (g) ur:c=13, (h) ug: ¢ =2,
|z, | < 1000 |z, | < 1000 |z, < 1000 |z, t| < 1000

Figure 4: Graphs of the solutions to the classical Boussinesq equation via tanh method

4 Timeline

In this section, we outline the research project’s structure across a two-month semester and two five-
month semesters as detailed in Figs. |§| and E The project involves two core tasks (solving problems
and writing weekly reports) and several tasks distributed across six milestones. Three milestones serve as
semestral checkpoints and require progress report presentations to the panel. The remaining milestones
encompass this proposal and two written deliverables: a manuscript for the home department and a
publishable article for the broader scientific audience.
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